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ABSTRACT

Experimental measurements of the differential scaftering cross sections
for excitation of helium by electron impact from its ground state to its 218
state are given at four incident electron energies in the range 26-55.5 €V
for scattering angles between 10° and 70° and at 81.6 eV for scattering
angles between 10° and 80°. These differential cross sections are nor-

malized by using previously determined 21P cross sections and measured
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ElS/ElP cross section ratios. These experimental cross sections and cross
section ratios are compared with results predicted by the Born approximation,
the polarized Born approximation, and several other first-order approximations
in which direct excitation is calculated in the Born appfoximation and ex-
change scattering in various Ochkur-like approximations. Calculations based
on these approximations.are also compared to the data of other experimenters.
The effect on the small-angle scattering of several nonadiabatic dipole-
polarization potentials is examined. For the 34-81.6 eV energy range, it is
shown that the inclusion of polarization is necessary for accurate predic-
tions of the angle dependence of the 218 cross sections at small angles.

The cross sections resulting from the'use of analytic self-consistent-field
wave functions for both the ground and excited states agree well with those

obtained from more accurate correlated wave functions.
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I. INTRODUCTION S o

In many cases, the first Born approximation has been suceessful “in’ tE
explaining the differential cross sections for electronic excitation of atoms
and molecules by electron impact at high energies (E greater thanabolt © '
150 eV) and small scattering angles (less than about 15°Q.l_ua’57~Thié”ié*the
region where a study of the assumptions behind the first Born approXimaﬁibn~
leads us to expect it to be most valid; although the quantitative’ validity
of the theory depends on the particular nature of thé‘trahéition.5’6' It
is deésirable to find a calculational scheme, as simple to apply as the® -t
first Born appfoximation, which represents'the’eééentialiféatﬁfés of the- ™
scattering proéess'at intermediafe impact energies (E = 15-150-eV)s = i

Tn a previous article  we presented’ a théoretical and experimental ™ -
study OFf the eléctron scattering differential cross sections (DCg's’) for”
the (1s2) 115 - (1s2p) 2P transition in heliwm. In thet paper we showed
that the angle dependence of the DCS for 5 < 40° and E = 3482 eV wag - C
accurately predicted in the first Born approximation. -The success of this’’
approximation indicates thaf electron exchange; distortion of the scatteriig
clectron wave function, and polarization of the target by the‘iﬁéomiﬁg‘éigC—
tron need not be included in calculating the angle dependence of the’ small-’
angle ICS for the 1'S - 21P'transition. In the pfésenf article ‘we use
simiiaftmefﬁﬁdg to study the (132) 11s ~ (1s2s) ol transition. - We find;,
howéver, that it is necessary to include polérizatioh of the target. The -
mSét{imporfént effééf is the dipoievpolarization induced in the térgét,
ana‘wé'uéé'thé:polarized Born approximation (a first Born calculation aug- -
menfedxﬁy péiﬁfizétion)8 to efplain the expérimentai data. The polarized

Born';bprbifﬁatiOn includes the effect of monopole and dipole polarizétion

.~ B

13
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of the target. We again show that it is not necessary %o treat exchange
and distortion accurately to explain the main features of the angular
dependence of the small-angle DCS. We discuss experimental and theoretical
results for the ratios of the cross sections for these two excitations and
both the differential and integral cross sections for excitation of the

2ls state.

2,9-1k of the 275 state

The previous differential cross section studies
are limited to small scattering angles g < 20° (except for energies near
threshold and for the data of Ref. 12 which may be in error at large g due
to double scatteringls). These studies are summarized in Table I, where
they are compared with the present ekperimental conditions. Pre-1940
experimental work on excitation of the n = 2 states of He is critically
discussed in Appendix IT. There are several previous experimental deter-

16-25

minations of the 218/21P differential cross section ratios. These are
summarized in Table II, where the energy and angular ranges are compared

to the present work. By using our experimental cross section ratios and
our approximate normalization of the o'p mcsts (Ref. T7) we can put our

218 ICS's on an absolute scale. PFurther, we integrate our 2lS ICS's to
obtain experimental estimates of the absolute 218 integral cross sections
for impact energies E = 26.5-81.6 eV. The only previous experimental esti-
mates of this quantity were obtained by Dugan, Richards, and Mnschlitzg6
for E = 25-135 eV and Vriens, Simpson, and Mielczarek2 for E = 100-400 eV.
>

Kim and Inokuti” concluded from a study of the available low-angle data
in the 200-400 eV incident energy range that the Born approximation is valid
down to lower energies for eXcitation of the 2lP state than it is for exci-

tation of the 2lS state. We study this question further in this paper.

Moiseiwitsech and Smith27 pointed out that the Born-Oppenheimer approximation,



TABLE I. Measurements of the differential cross sections

for the llS - 218 transition in helium.

Rl . . Een _8aee)

o Gol 7.6 - 8.6
& o 511 3.8 - 8.8
&a'~:' | by T4 - 9Lk
e 500 7 b7 -15.3
no s00 0.5 - 2.5
TR | 50 - 40O 5
. 300 = koo 5 - 10
5 : 150 - 225 5 - 15
. 100 , 5 - 20
P 56;5 o 5 - 60
13 | 2 20 - 1h
Present 81.6 10 - 80

Present 26.5 - 55.5 10 -"70

& The o1s ana 27p peaks “ere not completely resolvediin

all: the spectra reported in these references.

b s . . . .
The cross sections are given in relative units... .. .

l5V
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TARLE IT. Measurements of the gifferential

cross section ratios ZlS/ElP.

Ref. E(eV) 6(deg)
23 25,000 0
-9 511 4.0 - 8.8
10 500 6.3 - 15.3
11 500 0.5 - 2.5
2 300 - 40O 5 - 10
1T 235 9
2 150 - 225 5 - 15
18 202 0
2 100 5 - 20
19 22 - 80.7 0
12 56.5 5 - 60
16 50 0
2k 418,500 0 - 12
25 'u8 0 - 12
22 L6 90
1k 50 - L0O 5
Present 81.6 10 - 80
Present 26.5 - 55.5 0 - 70




which includes exchange effects, is much worse for S — S transitions than for
S - P transitions. This fault occurs because the Born-Oppenheimer approxi-
mation greatly overestimates the effect of exchange for the former case.

We bypass this difficulty by accounting for exchange using several Ochkur-

7,28-36

like theories. . These theories glve more reasonable predictions for
the magnitude of tﬁe exchange effect and show that for qualitative purposes
we may neglect exchange at small scattering angles.

In this paper we present and discuss new experimental and theoretical
results and give an extensive analysis and re-evaluation of the experimental

37-39

data of Rice, Trajmar, and Kuppermann.
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IT. EXPERIMENTS
The electron impact spectrometer and data collectlon procedures ‘used
to obtain the experimental results reported here hare been descrlbed
previously in Ref. 7.
The basic experimental measurements consist offthe determination of the

intensity of electrons scattered after los1ng an energy correSpondlng to

'

excitation of the 2 S state relative to the 1ntens1ty resultlng from

excitation of the 2lP state as a function of scatterlng angle fora: flxed
1nc1dent energy. These intensity measurements‘were taken., from the same
energy=-loss spectra used to obtain much of the data presented in Ref Te

The 2 S/2lP intensity- ratlos are determined by dividing the helght of the'g

2 S energy-loss peak»by that of the 21P ‘peak at each angle and energy

(0° =g =< 70° for E = 26, 3& uu and 555eVand 10° < g = 80° for E =

81.6 V). Peak heights rather than areas can’ be used since the peak shapes

B3

were found to be independent of scattering angle. The . 1nstrumental factors

relatlng the peak intensities to~the1r respectlve dlfferentlal cross sections

1

are the same to a good approx1matlon for both the 278 and the 2lP energy—

loss features in any one spectrum; therefore, these intensity ratios equal
the corresponding differential cross section ratios. These experimentally
determined"ratioswamewshown~inJFigsf l-3lalong with the.resultswdfjseveral

el ) L ) : .
theoretical calculations which are discussed in Secs., IIT and IV. The

LN

error llmlts ass1gned to the 26—55 5 eV ratios are the average deviations

2

of 4 to 7 determlnatlons at each angle. BEach data p01nt at 81 6 ev repre-
sents a 51néle determlnatlon. _ _ -

The 2 S/21P (and 2 S/21P 2 P/21P and 3 S/21P) 1nten51ty ratios at
g = O agreed well w1th those of Chamberlaln, Heideman, Slmpson, and

Kuyatt19 at E = 55.5, 44, and 34 eV but disagreed with theirs at E = 26 eV.

19
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Fig. 1. Ratio of differential cross section of the llS - 218
transition to that of the 1S - 2P transition as a
function of scattering angle § for E = 26.5 eV. The
circles (with error bars) are the present experimental
results and the curves are calculated by the 1ndlcated
method. The dotted line was obtained with b g (s/h) b =
1.93 a, and the dashed line with b = 2(5/h) bl = 3. 861
The value of a is 1.58k4 a3 in both cases.
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Ratio of differential cross_section of the 1's = 215 transi-
tion to that of the 1lg — 2lp transition as a function of scat-
tering angle 8. The present experimental results at E = 55.5
eV (triangles with error bars and connected by a solid curve ),
L eV (circles with error bars and connected by a dashed
curve), and E = 34 eV (squares with error bars and connected
by a solid curve); the results of Lassettre, Skerbele, Dillon,
and Ross (Ref. 25) at E = 48 eV (short dashed curve) and a
value from Doering (Ref. 22) at 46 eV (asterisk) are ‘shown.
The monotonic solid curves are calculated at 3k, Ll, and 55.5
eV in the Born approximation. o : s '
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Fig. 3. ©Same as Fig. 1 except that E = 81.6 eV. The circles e

the present experimental results; the asteris? is tle °
result of Chamberlain, Heideman, Simpson, ani Kuyatt

(Ref. 19) at E = 80.7 eV. The solid curve Js calcula e
in the Born approximation (B) and the dotted curve in.tiw
polarized Born approximation (B/PE’) with o = 1.58k o2 2al

b= (5/8) 1Y = 3.39 ag.



Since a change in our E of + O. 5 eV’(whlch is within our uncertainty in E,
see Ref. T) completely resolves thls dlscrepancy, we shall assume_that E =
26.5 eV in this case.

The absolute 2 S dlfferentlal cross sectlons are COmputed fron the

e e

above intensity ratios and the renormallzed absolute 21P dlfferentlal Cross
sections from Ref 1-as dlscussed below.. The extrapolatlon procedure used
in Ref. 7 to fac111tate normallzatlon of the ElP dlfferentlal cross sections

ssumed that the cross sectlons decrease monotonlcally w1th 1ncrea51ng angle.

.,f“ .

However, close coupllng calculatrons of electron—hydrogen atom ls—2p scat—

L L

tering predict dlfferentlal cross sections which rise s1gn1flcantly at hlgh
angles.uo Consequently, we renormalized the 2 P dlfferentlal cross sectlons
presented in Ref 7 by assumlng a constant cross sectlon for angles greater

than those for.which data were obtained. These,renOrmallzed values are lower

i
'

than those of Ref. 7 by 1.6% at E = 86.3 eV, T.6%:at E = 55.5 ev,: 8.0% at

i}

= W eV, 7.8 at E = 34 ev, and-l9.5% at E = eé.5 ev. §

The experimental 2 S dlfferentlal cross sectlons are presented in

Figs. 4-8 along with the results of several theoretlcal calculatlons Wthh

.

are discussed in Secs. IIT and IV. 7

The error bars assigned to tne élS différentral‘oross'secgidn data
include the errors in the ratios and uncertainties in the shape,but not
the magnltude of the 21P dlfferentlal cross sections. Therefore, these
error bars 1nclude the uncertainty in the angular dependence of the 2 S
differential cross sections but only part of the uncertainty_in their mag-
nitude. The percentage uncertainty in the overall scaie,at eaoh energy

is approximately equal to the "estimated percent error" in thé integral of

the ElP differential cross sections given in Table IT of Ref. T.

23



ol

1072

DCS(og/sr)

1073

Fig. 4.

T

N~ E = 26.5eV i
—— ~< _BOR .
. ~
N ~ o -
N S~

N ~e ]

Jf N BTKE >~
ﬁ BORP | 5
BORB. \ i

OP

|

'

BORB. I(SCF)

| | L |

, ]
\

BTVPS

45

60 73

0(deg)

-,

Differential cross section versus scattering angle for E =
26.5 eV. The circles (with error bars) are the present
experimental results. The curve labeled BORB.I(SCF) is
calculated in he symmetrized Born-Ochkur-Rudge approxima-
tion with the SCF wave functions. The other curves are
calculated in the indicated approximations using the accu-
rate generalized oscillator strengths (Refs. 5 and 86).
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Fig. 5. Differential cross section versus scattering angle. . for E =

34 eV. The circles (with error bars) are the present experi-
mental results. The curves are calculated using the accurate
generalized oscillator strengths (Refs. 5 and 86). The upper
dotted curve is calculated in the dipoleiﬁolarized Born approxi-
mation with o = 1.584 a3 and b = (5/4) b1" = 2.19 a5. The
lower dotted curve is the same but renormalized to experiment
at 8 = 10°. No other calculation is renormalized.
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The 218 integral cross section Q(E) is related to the differential cross

section I(E,§) by

Q(E) = am fﬂ I(E,e) sin g dg . (1)

Ry ey

NS TRR
TR S LI NI D 1, S A A S LA O

In order to perform thls 1ntegral, the 2 S

SRR ‘t i

extrapolated to O and to 180°. The extrapolatlon to 0° introduces little

unceftalnty 1nto the 1ntegral (see Ref' 7) but” the extrapolatlon to 180 i

the- highest- angles for-which- data.are obtalned ..... The..contribution .to. Eq.,(l)
of the“éxtrapolation to 180° is &ssumed to be ~ .
o SF Lo o A
o n.E A A o A
Qo (B) = 21 I(Byp ) [ singds , (2)

max

where 9 oy 1S the largest angle ‘for which data are obtalned Table TIT

gives the contrlbutlons to (1) from angles 1ess and greater than 6 ax and

tﬁéwfééﬁiﬁiﬁ§M2“SmiﬁfégfaIWE?Béé“Eé&ﬁiﬁﬁéﬁ”"Tﬁémégfiﬁéfédwﬁéfﬁéﬁf'é??6f“m”””

given in this table includes contributions from both regions of the integral

and.includes the uncertainty in both the shape and scale of the 218 aif-

ferential cross sections.
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TABLE ITII. Integration of the 215 differential cross sections

to obtain integral cross sections Q,-(lO-2 aog);
, N Estimated
5 (deg) Contributions to Q . |  percent
E(eV) max B < emax g2 emax . Q error

26.5 70 2.2 0.7 2.9 50
3k 70 2.8 0.4 ‘ 3.2 35
Ll 70 2.5 1.5 L.o L8
55.5 70 2.6 3.0 5.6 52
-80 2.5 0.9 3.4 58

81.6




ITI. THEORY

A. " Scattering Equations

L2
The theory of electron scattering by the helium atom ig.well gevg%gped. 22T

Consider the close-coupling equations for this problem. As written by Burke,
Cooper, and Ormonde;%l the coupled integro—differentigl'equations (in hartree
atomic units) for the radial functions FbGLS are

. B R T e R T
- R P L . 2 TP

»(d2_=_ tolty +1) +'k2)
m

5 5 T o

dr r

oD i

where L and S are the total orbital and spin angula® momentuin-quarftum numbers,
respectively; T is the separation between the scattering electron’ and thHes
atomic nucleus, m ‘denotes the state of the atom, Lg'ié?the‘orbi%al*éhgﬁlar
momentum of the electron, ¢ denotes the ihitisl state of the’atom, ‘ahdthe
sum is over all atomic eigenstates in the (necessarily truncated) expansion
of the wave function. The wave numbér kﬁ and the matrix elements an and
Kmh‘are‘defihed in Ref. hl. We make the approximation that® the eigenfinction
expansion is truncated to include M states of S symmetry 'and N states 6f P
symmetry. We denote unspecified S states by i and Jj, and unspecified P

1

.
states by B. Further we use 1, 2, and G to denote the 178, 278, and olp

states, respectively. If we specifically -consider scattéring fromground:

state helium, Eq. (3) becomes : ‘ o enll s
2 Ly + 1) S ; e
o e te2)d
dr r T
. ) M. ) c : D T B S e TH e o ;N
> i e ¥
~ - [ () K () F () o
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N
PR FIORE I i CON (4)
=Q

where we denote the nonlocal exchange potential by

1S

K @) = [k (e, )i ar’ . (5)
' e} .

We do not want to solve these equations exactly but rather to find simple
approximations. We next consider the terms in Eq. (4) for some special
cases to show which terms can be neglected and which terms should be approxi-
mated.

1. Elastic Scattering in the 11 state

02
For elastic scattering in the ground state, the Born-Oppenheimerh’27’F“

approximation corresponds to truncating the sums at M= 1 and N = O (no P
states) and approximating the radial function in Eq. (L) as a radial

function for a free particle with wave number k
1S s

Then the scattering amplitude is the matrix element between free particle

states of the nonlocal potential

2v, (r) + K (x) . (7)

The Born (B) approximationu consists in further neglecting Kll(r).
In these approximations we neglect completely the effect of virtual
and real excitations of the P states, i.e., the dipole-polarization of
. o . b L3-Lh
the target. It is well known that this is a serious error.

(Virtual excitation of excited S- and D-states, i.e., monopole and quad-

rupole polarization, are less important processes.) The polarization



ub 8 u3 L6

effect 1s espe01ally 1mportant for small angle scatterlng tThe

po;agizetionvefﬁectﬂgen be,included by using the optical poﬁeqtiel,,.

2v, (x) + K, (x) + 2Ull(r) (8)
instead of the potentlal (7) in the matrlx element. (r) is chosen to

3if 1
s1mulate the polarlzatlon effect Ihls 1s the polarlzed Born-Oppenhelmer

approx1mat10n, and neglectlng K, (r) ylelds the polarlzed Born (B/P

approximation. It can be shown that the 1ong range behav1or of Ull(r)

can be obtained in the adiabatic’approximation,u7'u9 in which it is assumed
that fluctuations in the incident particle's kinetic energy are small com-

pared to fluctuations in the energy E(n) of the target (virtual excita-

tidns). h7-51 In this way it can ‘be shown that- -
-0
11
Foommanin s o o fer o O T e BT e anan amee mol s (2)
2r

phesT e aany T e T o Z ._-2 2 lBZBl

\ B«x A 1

mowal e snnE IO

L TR N <jlslzi + Zérslp>‘-.:zﬂ;rx A D (1)

3B
oy - 56%e) -5l T )

In Eq:~(&10,“zl and-zQ?are:the z-components of ‘the' position Fectors-of the
two bound electrons. The large-r behavior of Ull»cenVBe comparéd With that

of V)i
v . !l : .
11~ ey exe(eepyr), me (13)

with c! > O... It is because Ull is & long range potential compared with .V

1T 11

that. polarization is so,dimportant for elastic scattering im the, ground state.
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At very high energy the nonadisbatic effects become very large (so that
(9) holds only at such large distances so as to be unimportant ), and the

polarization potential is vanishingly small.

2. 1's - 21p Excitation

For excitation of the 2lP state from the ground state, the Born-
Oppenheimer approximation to the transition amplitude is the matrix element

between free particle wave functions of

EVLx(r) + Khx(r) . (14)
Since
!
ViB(r) ~';§§ sy T 7w, allB |, (15)

is a long range potential, the effects of polarization and exchange on the
small angle scattering for this excitation are much smaller than for elastic
scattering. Indeed, the Born approximation, which neglects these effects,
predicts the angle dependence of the differential cross section for exci-
tation of the 21P state quite well for small scattering angles.7

ll

3. 1% - 2's Excitation

a. Born-Oppenheimer Approximation

For excitation of the 218 state from the ground state, the Born-
Oppenheimer approximation can be obtained by truncating the sums in (L) at

M=2and N =0 (no P states), making the further approximations (6) and

() = 5, (k) (26)

Lo

and approximating the transition amplitude as the matrix element between

the free-particle wave functions (6) and (16) of the non-local transition



potential

2V12\r) + Klg(r) . | - (17)
For this optically forbidden transition52 - o
~ ol —

with c12 > 0. This potential is shorter- range than the transition potentlal

T
Sl

(15) corresponding to the optlcally allowed transtlon to the 2lP state. -

v

b. Born Approximation

~

The Born approximation is the same as the Born-Oppenheimer approxi-
mation except Klé(r) is neglected in (17). - .. et sUrod

c. Polarized Born Approximation E S e Ry

Because of the different ranges of the tran51tlon potentlals V12 and

lB(1 = l ,2), the second order process 1 S - BlP -2 S can provide impor-
tant competltlon with the first order process 1 S - 2 S as the dominant
mechanlsm for this process. ‘Thus, the most serious error in the Born:ﬁv.f
approximation for the 11s - 2lg excitation is the neglect of w'ri'r;‘l:ua:L':is‘vluﬁr:)iz
excitation of P states (polarization).53 This effect can be included by
using the full close-coupling equa’cionsl’Ll (4) or by second order perturba-
tioﬁ'iﬁeory. We will include it by a method not previously applied to
electronically inelastic scattering - the polafi%ed Bofn approximation.

We replace the potential Vl2(r) by

where.Ulg(r) is a generalized optical po’cen‘ciaLJ_SLL designed to incorporate

the polarization effect. For small r we must take account of

35
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nonadiabatic effects, but the asymptotic form of Ulg(r) can be obtained
55-56

using the adibatic approximation. Making the adiabatic approximation

in the initial state (electron in the field of He llS) results in
i

e ™=f 27" (20)
2r

where the static transition polarizability

Z

Z
app = ale(l) =D E _gg_gi . (21)

LB,

Making the adiabatic approximation in the final state (electron in the
field of He 2'8) again yields (20) but with
“o 7 %12 -5 - (22)

AR

Z
o (2) =2 152?2
g 2

The asymptotic form (20) is not valid at all r and we will use the two-

parameter forms

ﬁ
Ul - S (23)
2R 4 b0
L

UB -al2/2r r>"=5 (2)‘!‘8‘)

12 - b <
1112/2b r<»=o (2Mb)
UBl 1112/2ru r>b (25a)
12 - 1112r/2b5 r<bp (25b)
o -oLlE/ErLL rsb (26a)

U, =

1 0 r<b (26b)



as approximate representations of the polarization transition potential for
all r. The forms are chosen so that by making b large we can reduce the
polarization potential for r < b from its asymptotic form. This . reduction
simulates the main nonadiabatic effect. In this regard the form B', which
has not been used previously, is apparently the most rez;v.l:’Lsticsrra of the
four.

RSP -
‘The scattering amplitude in the polarized Born approximation  is

PP P fF o (21)

where
= - %ﬁ- [ d?3 eia.z:3 U, (rs) (28)
£ - '§lﬁ J &,3813-?3 JI d;ld;sz(?l_’;Q)q’l(;l’FE)[}i +1‘_:2L_3] (22)
- - (4/q)m
= [ REL Ty (FF )R (30)
T-F, - % . (31)

¢l and ¢2 are the initial and final state wave functions, respectively, ?l

and,r2

are the position &ectors of the two bound electrons, ?3 is the posi-
tion vector of the scattering electron with initial wave number kl and
final wave number kg, and g is the momentum-transfer. Ui2 and fB depend on
the phases of the bound state functions in the same way; thus, the cross
sections (proportional to the squared modulus of fB[P) will be independent
of the phases of the bound-state wave functions. We have consistently
chosen the spatial part of the llS bound state wave function ¢1 positive.

The spatial part of the 218 bound state wave function ¢2 1s chosen negative

37 .
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at the nucleus and positive at large rl and r2. With this choice of signs
and the wave functions in Section IIT.B, M is calculated to be negative
and fB is positive for all g, and Q5 is positive when evaluated theore-

tically (see Eqs. (21)-(22) and see below). Since the polarization transi-

tion potential U, is spherically symmetric, (28) can be reduced to

&+ = -(2/q) jm sin qr Uy (r)r dr (32)

and the integral can be performed analytically for the potentials of Egs.

(23)-(26). We obtain
F) = (@) /i) e (-B) (33)

£ - @ o272+ DERE) + (5 - B ")cos B

- % mB + % B si (B)] (34)
PO (@ )G+ 27 (EED)
1 -2 -4y, cos B -4
+ (5 -B +2B (=) - 2B
- B+ % B si (B)) (35)
£(C) _ (ale/b)[% B! sin B + % cos B - % B + % B si(B)) (36)
where

B = gb
B .

si(s) = [ 22 ° ap (37)



Although the potentials (23)-(26) all have the same long range form,
the limiting forms of fP at small scattering angles differ. These results
are given in Appendix I.

Notice that fP(A) is positive for all g but the amplitudes associated
with the B, B', and C forms of the potential may be positive or negative,
depending on g. waever, since all the forms leaa to fP being positive:-at
small q (see Appendix I), the polarization amplitude will .interfere con-
structively with fB there and will increase the small angle scattering.
Since the form of £ for large q depends on the uncertain details of U12(r)’
i.e., on its small r form, we cannot trust the pre@icﬁions of this simple
polarization model at large scattering angles. By using moreffhan 6n¢ .
form for Ui, at smaller r we get an estimate in each case of how larée,a
scattering angle can be treated without a better deel_fqr the polarizat;on
potential at small r. | : o

Previous treatments of the polarization effect_indicate_#h;ﬁ %15 sh?gld
be independent of energy and equal to the static transitidh pqlarizébi;ity
,(21) or (22), but that the cutoff parameter b in Eags. (23)-(26):should‘beA
energy-dependent. Mittleman57b discussed the polarization effeé£ for iﬁ-‘

elastic scattering and concluded that nonadiabatic effects may be larger

53

in this case than for elastic scattering, i.e., b may be very large.
Polarization correctibns must become small at very high energies.' Never-
theless, in treat;ng electronically elastic scattering it has been found_'
that use of the static polarizability and a cutoff of the‘ﬁagnif£Qe‘of,£he
target dimensions provides a reasonable approximation even at energies és

high as TOO _ev.8’l*3'm’46

Holt and Moiseiwitsch's58 second-Born calcula-
tions show that polarization corrections become small at a lower energy for

inelastic scattering than for elastic scattering.

-39



As shown above, we obtain different adiabatic polarization potentials
if we consider polarizing interactions in the initial and final states.
Since we do not have a good method for quantitatively estimating nonadia-

batic effects, we wish to use the case which has smaller nonadiabatic

50

corrections. Tetter and Watson show that a reasonable criterion for

validity of the adiabatic approximation in state j at a distance r much

greater than the atomic radius is

b?w = k,/< AP s < (38)
J J d

In (38), < AE% > is the effective average value of AE§ over all states B
causing polarization. The usual approximation is < AE? > = Uj where Uj is

the ionization potential in state j. In our case, Ul = 0.90372 a.u. and U, -

0.14597 a.u. However, we find (see below) that excitations from the oTs

state are dominated by those to the Q;P state. Thus, we take < AE? > = Ul’

but < AEE > EEAEg = 0.02213 a.u. We can now use b?w as an approximate esti-
W

J
with an energy-independent constant of proportionality). The results are

mate of b (we expect that b is at least approximately proportional to b

shown in Table IV. The table shows that the adiabatic approximation to
polarizing interactions in the final state is a good approximation only
for distances too large to be interesting, i.e., nonadiabatic corrections
are large in this case. However, it also shows that we can use the adia-
batic approximation to polarizing interactions in the initial state to ob-
tain a useful estimate of the polarization effect. TFor lack of a better
theory at this time, we will consider biw to be the theoretically most
Justified choice for b in Egs. (23)-(26). At zero momentum transfer (g =
O), the scattering amplitudes fP associated with the polarization forms A,

B, B', and'C (see Egs. (23)-(26) and Appendix I) are o/ Wb, La/3b, Sa/bb,



TABLE IV. Values of the cutoff parameter b?w computed

using the Fetter-Watson formula (Eq. 38).

Eo k- K o ba"
en (@) (a2 ™) (2) (1)
- 26.50 1.0 0.66 1.5k 29.72

4,00 1.80 Cna 1.99 5921
81.63 2.5 | a2 ‘_ 2.1 95.69
150,00 332 3.08 3.67 139.35
SOQ.OQ ko 4.53 500 201 .77
~500.00 6.06 5.94 6.1 268.23
25000.00 42,87 ue.ss uTAs 1936.24

b1



and a/b, respectively. In order to make these amplitudes equal at g = O,

we usually use b = (const.) x biw where the constant is m/4, 4/3, 5/4, and
1 for forms A, B, B', and C, respectively. We will also consider an empiri-
cal determination of b in Section IV.A.L.

There are at least two reasons why we ‘might expect nonadigbatic effects
to be larger for electfonically inelastic scattering than for electronically
elastic scattering. (1) A change of electronic state is a nonadiabatic
phenomenon. (2) Elastic scattering is dominated by large &2 (large impact
parameters in semiclassical language). At any given energy, the relative
velocity along the line connecting target and projectile is smaller for
larger impact parameters than it is for smaller ones. Consequently, elec-
tronic adiabaticity (which roughly depends on the relative velocity being
smaller than the average kinetic energy of the bound electrons) is more
likely when &2 is large. Inelastic scattering cross sections are smaller
than elastic scattering cross sections so that they depend more on low-
partial-wave scattering; thus, the adiabatic approximation should not be
as accurate for inelastic scattering as for elastic scattering.

d. Polarized Born-Oppenheimer Approximation

The polarized Born-Oppenheimer approximation consists of replacing

the potential (17) by
Vio(r) + U, (x) + Ky (x) (39)

where V12 is the direct transition potential, U12 is the'(direct) polari-

zation transition potential, and Klg(r) is the exchange transition poten-

tial. Upon summing over partial waves, Vlg(r) and Ulg(r) lead to the direct
scattering amplitude fB/P and Klg(r) leads to the Op]_oenheimeru2 exchange
BO

scattering amplitude g ,



T -iK
= f” € LU2 r3’r2)‘”1(rl’r2)(;33 P 1"3)

T dr, ar. . 40
dry dr, drs . (ko)
In the polarized Ochkur-like approximations considered below we use the
potential (39) but modify the terms containing Klg(r) in ways designed to
remove some of the failings of the Oppenheimer exchange amplitude.

e. Ochkur Like Theories and Polarized Ochkur- lee Theorles

The Born- Oppenhelmer (BO) appro1>c1mertlonlL2 was the flrst and is perhaps
the most well-known method of including electron exchange, but the exchange
amplitude in this approximationAsuffers from a number of serious deficiencies,
including the lack of orthoganality between the initial and final total-
system wave functions. In practice, the calculated cross section is much
too large near threshold, leading to a serious violation of flux conservae

29

tion. The role of the electron-nucleus interaction term in a first-order
theory has recently been discussed by a number of workers.6o Although the
angular dependence of the BO differential cross section is in fair qualita--
tive agreement with the accurate theories, the magnitude‘is invafiably £00

3> Only those first-order

large except at the highest electron energies.
approximations to the exchange amplitude which represent improvements over -
the BO approximation will be employed here.
28,61 X c s M
Ochkur observed that in the case of the excitation of helium, the
prior-interaction form of the BO exchange scattering amplitude (Eg. (40)),
can be expanded in inverse powers of the incident electron energy. Retain-
ing at all energies only the first term in this expansion results in what

we call the prior-interaction form of the Ochkur (0) approximation. The

exchange amplitude in this approximation is related to the Born.approximation

by
43



0 = ()0 (41)

Any expression like this one which relates the exchange amplitude to the
direct amplitude by a factor independent Qf the electronic structure of the
target will be called an Ochkur-like approximation. Although Ochkur's
formula cannot be obtained from a variational expression, Rudge has ob-
tained29 an approximation (denoted OR) based on a variational principle in
the prior-interaction form. It is designed so that it reduces to the Ochkur
form at high energies, but it sometimes gives improved cross sections at

lower energies. The exchange amplitude in the OR approximation is

2ig
2 212 B
OR q f
(k2 + 2Ul)
where
1 Vel X
= = —_—
*12 tan kg ( 3)

and Ul is the ilonization energy. However, the OR approximation to g com-
: itn £8 o £B/F . . :

bined with or does not satisfy detailed balancing because of the

nonsymmetric phase factor in the amplitude. Bely62 removed this discrep-

ancy by forming an exchange amplitude which is the absolute value of the

(OR) form. We call this the symmetrized Ochkur-Rudge approximation (de-

noted ORB.I),

The Ochkur and Ochkur-Rudge approximations also exist in post-interaction

forms,7 and we shall present some results based on these forms.



Vainshtein, Presnyakov, and Sobelman63 (VPs) have suggested a different
approach for the calculation of the excitation cross sections in which the
emphasis is on a more complete account of the electron-electron interaction.
The validity of the final expressions for the scattering amplitudes has
been,questioned27a because of the various mathematical approximations made
in their derivatioh. Nonetheless, the method has been found to lead to
approximately correct cross sections for the excitation of the H-atom,63a
and on that basis it is worth considering. The ratio between direct and
exchange amplitudes in the VPS method may be used to construct an Ochkur-

like relation which is called here the transferred Vainshtein-Presnyakov-

Sobelman (TVPS) approximation. ‘The TVPS exchange amplitude takes the form

TVPS _ q
g = Coyps 2 £ (45)
1
where
_F(-iv, iv 1; 1/4)
Crves ~ F(-iv, iv, 1; X) (46)
and

2

y_2MEre® 1 (17)

OAE + 3q° Ky + NETH

FX, Y, Z; W) is the hypergeometric func*l:ion,6br and AE is the excitation

energy. We present the integral cross sections obtained by using the VPS

63

method - for both direct and exchange scattering.

The final model to be considered here is one constfucted from the

ratio of the direct and exchange amplitudes as calculated by Kang and

33,60b,65

Foland. In their treatment, care is taken to treat all the

AS
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electrons equivalently and to use the same approximations for both the
direct and exchange amplitudes. Although their results do not suffer from
many of the inconsistencies of other first-order theories, they had to make
a number of mathematical approximations similar to those made in the VPS
derivation in order to reduce their formal solutions to amplitudes which
could be evaluated. By using their ratio of exchange to direct amplitudes,

the transferred Kang-Foland (TKF) exchange amplitude is constructed as

12

2
TKF B
g = 95 CKF T (k8)
=)
where .
i/k i/k ) - =
c =X Hers) ® F{l-i/k.,1 Pl Kp) (L9)
KF e e 1’ K.k
12
F(i/kl,ikg,l;X)
where
2 2
e =q°/2, B = kyky cos 8 - ki, v = (ki - kg)/2, (50)
and X = 2k k,(cos B - 1)/(k, - k2)2 .

The quantity F(X,Y,Z) is the confluent hypergeometric func’t:ion,&L and g is
the scattering angle.

The various models for the exchange amplitude g described above are
combined with the Born amplitude for direct excitation fB to give the total

scattering amplitude. In terms of these amplitudes, the differential cross

section is

K 2
I(k,,6) = }—fL- 12 - e . (51)



In the polarized Born-Ochkur-Rudge (BOR/P) approximation, the direct ampli-
tude fB is replaced by the polarized Born approximation direct amplitude
fB/P, and the prior-interaction Ochkur-Rudge model is used for g.
Tt should be noted that of the approximations discussed above, only
. . . . . TKF OR
those with total scattering amplitudes which contain g or g are com-
plex. The other models involve phases between the.diréétuaﬁdheigﬁéhgé

amplitudes such that the total amplitude can be taken as eilther real or

imaginary depending on the particular transition.

B. Wave Functions

1. llS Wave Function

Many approximate wave functions for the llS ground state of helium
have been reported in the literature. Calculations based on two of these
wave functions will be presented here. One of these is the 53-term corre-

lated wave function of Weiss.66 The other is the self-consistent-field

(SCF) function of c:Lemem;i67

v, =z (7)) g (¥,) n(1,2) (52)
where 7 is a singlet spinor,

() = L ¢ 1 %1 (Tyc) (53)

and Xoi(r) is a.normalized hydrogenic 1ls orbital with érbi£alb¢kpph§#t Zoi'
The coefficients i and orbital exponents are given in Table V. The Welss
and Clementi wave functions are compared with each other and with some
others in Table VI. TFor first-order scattering theories, the spatial extent
ot the electron charge distribution is of primary importance in determining

_69

the accuracy of the calculated cross sections. Therefore, as an

by



TABLE V. Parameters for self-consistent-field (SCF) wave functions.

State n i c . Z

ni ni

1s® 0 1 0.835188 1.446

0 2 0.189650 2.870

olg® 1 1 0.998451 1.992

1 2 , 0.001185 L.812

2 1 -0.00061 0.528

2 od 0.001299 1.210

1 3 -0.117763 1.992

1 L -0.006733 L.812

2 3 1.176333 0.528

2 e -0.315588 1210
% Ref. 67.
P gef. 85.

¢ The orbital exponents are optimized in both the llS and 2lS calcula-

tions.

The u orbital cusp is -2.0043461 a.u. and the v orbital cusp is
-2.1079229 a.u. The cusp property is discussed by C. C. Roothaan
and P. S. Kelly, Phys. Rev. 131, 1177 (1963).
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TABIE VI. Energies and second moments
for helium wave functions.

' 2
Energy < ri + rg > No. of - Functional

No. of
State Ref. (hartrees) ( 2) parameters form SCF Terms
aO eg. no.
s a -2.8475 2.1070 1 52 Yes 1
67 -2.86167 2.3712 3 52 Yes 1
82 -2.87251 - 6 55 No 1
b -2.90332 2.3872 5 Sk o L
66 -2.90372 - 5k 5L No 53
N - 70(2) -2.90372 2.3870 1078 54 No 1078
2°s
c -2.1475 21.7 3 55 No 1
75 -2.14439 38.8 3 55 No 1
82 -2.14345 - 8 55 No 1
Presentd -2.1h37h 33.372 10 55 Yes 1
Present® -2.1437h 33.419 10 58 No 2
f -2.14kho7 33.1 13 Sk No 9
T2 -2.14490 - 6 54 No 6
g -2.14559 32.36 not given 5k No not given
66 ' -2.14597 - 55 , Sk No 5k
T0(®) -2.14597 32,178 Lok Sk No  Lhk
a. E. A. Hylleraas, Z. Physik 54, 347 (1929).
b. A. L. Stewart and T. G. Webb, Proc. Phys. Soc. (London) 82, 532 (1963).
c. P. M. Morse, L. A. Young, and E. S. Haurwitz, Phys. Rev. L8, 9i8 (1935).
d. GF wave function, not orthogonal to llS wave function, see. Ref. 85.
e. Orthogonal to lls wave . function.
f. A. S. Coolidge and H. M. James, Phys. Rev. 49, 676 (1936).
g. H. O. Knox and M. R. H. Rudge, J. Phys. B (Atom. Molec. Phys.) 2, 521 (1969).

See H. O. Dickinson and M. R. H. Rudge, ibid., 3, 1284 (1970).
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additional check on the accuracy of the calculations to be presented in
Section III.C, the expectation value < ri + rg > is also included in Table
VI. Comparison with the exact results of Pekeris7oa shows that the Clementi

wave function is quite accurate, at least for this expectation value.

2. 213 Wave Function

The 218 state of Helium presents a more difficult problem since it is
not the lowest state of its symmetry (lS). The standard variational prin-
cipleTl guarantees only that the energy calculated for a wave function
approximating this state 1s an upper bound if this wave function is ortho-
gonal to the exact ground state (llS) wave function. This is an obstacle
because the exact llS function is not known. This difficulty can be over-

come by writing a linear variational function
N
Y= % c.E, (5k)

where all the gi have lS symmetry and setting up the secular equations for

the coefficients. The system of equations has N orthogonal solutions (a

T2

solution is specified by a set of ci). Hylleraas and Undheim

73

and
MacDonald' '~ have shown that the solution which yields the second lowest
energy is an upper bound to the second lowest state of lS symmetry. This
procedure has been used by several authors to approximate the helium wave
functions, and some examples are given in Table VI. Kim and Inokut15 have
calculated generalized oscillator strengths using the accurate Weiss wave
function of this form, and we have used their results to calculate scatter-
ing cross sections (see the next section).

It has been shown by various researchers that, when approximate wave

functions are used to calculate physical quantities (such as the matrix



elements (30) used in this paper) which do not explicitly depend on elec-
tron correlation, a self-consistent-field wave function may be as good as
or better than a correlated wave function of the same number of parameters.
Since many-parameter correlated wave functions are difficult to work with
and interpret and .since the good wave functions available for molecules and
heavy atoms are often SCF wave functions, we want to study the effect of
using these wave functions on scattering calculations. We consider the
orbital approximation

v = L [uF) v(F,) + v(F) uE)] a(2) (55)

SV

“This form for the 218 wave function was first considered by Fock,Ta who
derived equations for the nonorthogonal SCF orbitals u and v. Fock's equa-
tions were solved numerically by Trefftz, Schliiter, Dettmar, and J6rgens.79
However, these equations are complicated by the nonorthogonality of u and
v,75_76 and the first analytic wave function of the form (55) was not scr. °
In an attempt to approximately insure an upper bound on the energy of the
215 state, some workersrﬁ_TT have orthogonalized their approximate wave
functions to approximate wave functions for the llS state. One way to do
this is to use the "fixed core" modification80_82 to obtain a non-SCF wave
function of form (55). This method is also called the improved. virtual
orbital metho‘d.83

The form (52) is equivalent for helium to the form of the wave func-
tion in a more general, new SCF method - the GF method.8u The SCF wave
function of form (55) so obtained can be shownSu to yield an upper bound

1
to the true 2°S energy. Cartwright and Goddard85 have calculated an analy-

tic GF wave function for the 218 state. In this wave function

51



2 2

wWF) = T T e x () (56)
n=1 i=1
. 2 L4
v(rk) = Z .Z Cnani(rk) . (57)
n=1 i=3

The Xpi are normalized Slater atomic orbitals of principal gquantum number
n and corbital exponent Zni' The coefficients and screening constants are
given in Table V.

To insure reasonable values for calculated transition moments (see
next section) we found it necessary to consider a 218 wave function which
was orthogonal to our approximate llS wave function. The new 218 wave
function Y(QlS) still yields an upper bound on the true 215 energy. The

new wave function is

1
Y(els) =

- [wg(els) -8 wl(lls)] (58)
1-S

where Y2(2ls) is given by equations (55), (56), and (57) and

S =< Y(ElS)IYl(llS) > = -0.01498479 . (59)

The properties of this orthogonalized wave function (58) are compared with
some other calculations in Table VI. The table shows that the GI' wave
function gives charge distributions in good agreement with the exact cal-

TCb

culations of Pekeris for the excited state. The table also shows that

the properties of the GF wave function are not much changed by orthogonali-

zation to the approximate llS wave function.



C. Generalized Oscillator Strengths

The differential cross section (Eqg.. (51)) can be written in the first
' Born approximation or one of the Ochkur-like approximations in terms of

"the generalized oscillator strength &(q). TFor example, in the Born approxi-

'matlon
I(x,,8) = (k,/% )(2/a"8E)8(a) (60)
e #a) = 25 il (61)

q

(see Eq. (30)) The effect on the calculated CYOSS sectlons of the use of
PR 557,68, Tk

approx1mate wave functions has been discussed by numerous authors

Accurate generallzed oscillator strengths for the l S - 218 transition

p)

f-have been calculated by Kim and Inokuti” using the Welss66‘correlated wave

ifunctlons and also by Bell, Kennedy, and Klngston86 using the same wave
'functlons.”mThe results of these two calculatlons éenerally agree to three
"51gn1f1cantuf1gures. The generallzed osc1llator strengths obtained using
the orthogonal SCF wave functlons dlscussed above with both the theoretl—

" cal and experimental values'of AE used in Eq. 61 are compared in Table VIT
withuthe values tabulated-by Bell et al.86 Also included in the table are
the results obtalned for the nonorthogonalized le wave function and the
recent results of Schneider,87 who calculated this quantity utilizing

‘ linear response theory. Figure 9 is a plot of the data given in Table VII

"to illustrate more'clearly'the differences in_the. generalized oscillator

strengths. One notes that the result obtalned with the nonorthogonal 218

-

7 . g o

SCF wave function is extremely poor for q 5 The result from_the ortho-

86

gonal SCF wave function is smaller than the accurate result of Bell et al.
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Fig. 9. Generalized oscillator strength for the He(llS - 218) transition as a function of the

momentum transfer. The solid curve is obtained using the present orthogonal wave func-
tions with AE = 0.7576 hartrees; the open circles are from Bell, Kennedy, and Kingston
(Ref. 86); the dashed curve is from Schneider (Ref. 87); and the dot-dash curve is that
calculated using the nonorthogonal olg wave function.



TABLE VIT.

(The numbers in parentheses are powers of 10 by which the

preceding nunbers are to be multiplied.)

Generalized oscillator strengths in the length formulation.

Orthog. Orthog. Nonorthog. BKK® Br" K"
q(a u. ) - GFa e ar® aF> Schneider’ (accurate) Case A Case B Kennedy
0.001 ' 7.2027(-8)" :6.8283(-8) 1. 3609(+3) ~0
0.01L 7 T.4671(-6). .7.0789(-6) 1.3629(+1) 8.3622(-6)
0.10 Te3634(-4)  6.9806(-k) - :1.5627(-1) . .- 8.241(-4) 7.38(-4) 8.43(-4) 8.2L06(-L)
0.50 -* 2.8208(-3) 2.672(-3)  5.57h7(-2)  3.3588(-3)  3.154(-3)  2.83(-3) 3.22(-3) 3.1538(-3)
0.40 " '9.5234(-3) 9.0284(-3)  3.4955(-2) 1.061(-2)  9.53(-3) 1.08(-2)  1.0607(-2)
0.50 -+ 1.317(-2)  1.2u6k(-2)  3.4198(-2)  1.55k0(-2)  1.460(-2)
0.70  1.8761(-2) 1.7786(-2)  3.ke01(-2)  2.2032(-2)  2.070(-2)
0.80 2.0276(-2)  1.9222(-2) 3.3567(-2) 2.3722(-2) 2.228(-2) 2.01(-2) 2.21(-2) 2.2276(-2)
0.90 77"~ 2.0861(-2) ;. -1.9777(-2) ., 3.2@63(-2)“ | 2.4314(-2) 2.282(-2) S _
1.00  2.0616(- 2)  L.oshli(-2)  3.0386(-2) 2.3936(-2)  2.2k5(-2) £.03(32) 2.19(Z2) 2.2lso(-2)
110 1.9704(-2)" 1.8680(-2): 2.7959(-2) SRR St T o
1.20  1.8315(£2){ - 1.7363(=2){ - 1.5280(-2)-  : 1.976(=2)  1.78(-2) 1.90(-2)
1.30 1.6633(=2) ~+1.5768(=2) r{ 2.248@(f29w,; 1.9105(-2) 5 ;;j;m;;
1.40 1.4816(-2){ - L. hOU5(=2){ -2 1.9702(52)- ) 1.5§éﬁzg§
‘l ;5013 2987( 2)~ 152312 2)»-~>1.170«51#(«-_2«),4~--~~~l<-118.35(-:2-)» — .i.,: . o et e et e e+
1 6o: W 1234( 2) 1.0650( - o)+ 1.4609(=2)  1.2806(12). (13188(* 2) 1?05%-2) 1:.11(-2) R
180 8.1541(53) 7.7302(53) | 1.0863(-2) '9.3686(-3)  8.526(-3) K =
2.00  5.75hM(-3)  5.h553(-3)  7.3267(-3) 6. 5311( 3) TS ) BN T 1) RN 1) M
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TAPIE VII (cont.)

Orthog. Orthog. Nenorthog. BKKc BKd BKd
g(a.u.) crF? cF> arF™ Schneiderb (accurate) Case A Case B Kennedy"
3.00 8,9353(-u)‘ 8.b708(-4)  1.1317(-3) 8.605(-k)
4,00 1.5533(-4)  1.b7261(-4) 1.9828(-L4) 1.406(-4)
5.00 3.303%(-5)  3.1317(-5)  k.2h39(-5) 2.896(-5)
bE (a.u.)t 0.75765 0. 718" 0.75768 0.75775" 0.7599%  0.729" 0.7578"
lim 8(q)  T.#671(-2)  7.079(-2)  1.3629(+5) 7.5(-2)  8.6(-2)  8.3261(-2)
g—-0 q2
a Present.
b Ref. 87.
€ Rer. 86.
a

SR o+ 0

K. L. Bell and A. E. Kingston, J. Phys. B
D. J. Xennedy, J. Phys.

Experimental value'.

Theoretical value.

B 1, 526 (1968).
Value of AE used in Eq. (61).

1, 521 (1968).



for all-values of q < 2+4 a.u., and the same conclusions reached in the
study of the 21P excitationT concerning the reliability of SCF wave func—
tions also apply here. On the other hand, the results obtained by
Schneider87 are larger than the accurate values for all values of g. Since
a separate wave function was not calculated by Schneider in applying linear
response theory, the differences between hlS results and the accurate values
cannot be analyzed in the same manner. o .

A1l our calculatlons of 2 S DCs! s and 2 S/21P DCS ratlos us1ng “the
methods Wthh 1nclude polarlzatlon were carrled out u31ng SCF wave functlons,
ies, ¥ (Eq. 52) for the 1ls state, ¥(2 s) (Eq. 58) for the 2 s state, and
the 2lP wave function of Eq. 33 of Ref. 7 with the experlmental value of
AE. When it is not stated otherwise, calculations;of DCS's and ratios which

do not include polarization are performed using the accurate llS - 218

5,86

generalized os¢illator strengths.

D. Theory of the Transition Polarizability

The trans1tlon polarlzabllltles are deflned by Eqs. (2l) and (22)
Although the perturbatlon theory of off dlagonal matrlx elements is less
well developed than the perturbatlon theory of dlagonal matrlx elements,
any of the standard technlques of perturbatlon theory can be applled to ﬁ
evaluate these quantltles. That 1s, wehcould use‘dlrect‘summatlon, the Z
expansion,88_89‘or Buckinghanm's varlat1onal—perturbatlonal method for ob— |

talnlng first-order perturbed functlons.9 =93 The d1rect summatlon technl-

S5

que has the advantage of ohow1ng which P states make 1mportant contrlbutlons
and g1v1ng quantltatlve estlmates of the errors 1nvolved in neglectlng cer-
taln groups of P states in the elgenfunctlon exbans1on of the wave functlon
(see Eqs. (3) (). The varlatlon—perturbatlon methods ‘have the advantaée

that they can be used to compute very accurate values of the trans1tlon

o7
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polarizabilities. The variation-perturbation method for a

g;) proceeds by

writing
{2 o2/ <yl B> (62)
H = -F(zl + z2) (63)

where YE is the perturbed helium ground state wave function for the pertur-
bation Hl.' Y2 is the helium 218 wave function, and F is the electric field
produced by the scattering electron. The variation-perturbation method for

agg) proceeds by writing
2 2 o)
o{®) = (2/7?) < v |m, |2 > (61)

where Yg is the first-order perturbed helium 218 wave function for the same
perturbation. If the perturbed wave functions are calculated in terms of
the usual eigenfunction expansion, we obtain (21) and (22).

The Zj 's in Egs. (10), (21), and (22) can be evaluated from various

B
wave functions. The best available results are given in Table VIII. The
matrix elements in the table and the corresponding energy differences be-
tween the states show that perturbation of the ground'state involves sev-
eral excited P states in an important way. However, perturbation of the
ElS state mixes in essentially only the 21P state.

Accurate values of the transition polarizabilities have been computed

oL

by Drake” by the variation-perturbation method using 50-term correlated

wave Tunctions. The construction of the basis sets used for this calcula-

tion was described by Drake and Dalgarno.95 Drake finds a§§) = 101.6 ag
1
and agg) = 1.584 ag. From the discussion in Section III.A.3.c, it is
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apparent that the latter value is the appropriate one to use in the
present model. s

It is interesting to consider calculations which include both the
initial state polarization and the final state polarization interaction
with the very large values of the cutoff parameter suggested by the Fetter-
Watson criterion (see Table IV). Although agg) is much larger than aﬁ%),
bgw is so large that the correction is very small. In fact, adding this
interaction does not even ghange the first few significant flgures of the

calculated DCSe



IV. COMPARISON OF THECRETICAL AND EXPERI-

MENTAL DIFFERENTIAL CROSS SECTIONS
A. Ratios
Tn this section we consider the ratio of the DCS for excitation of the

2%8 state to that for excitation of the 21P state.

1. ZEnergy Dependence

The intermediate and low energy ratio data exhibit two trends which

are qualitatively predicted by the calculations. First, the low angle (8 <
15°) ratios increase with decreasing impact energy (see particularly Figs.
2, 10, 11, and 12), and second, the large angle (8 > 60°) ratios increase
with increasing impact energy (see particularly Figs. 2 and 13). ’Figures
10-13 show that the theory and experiment are.in better agreemeht for the
fatios at small 8 than at lafge 9. They also show that the theory predicts
the energy dependence of the ratios better than_it predicts the ratios them-
selves. The Born approximation (eithér Qith or %ithout correcting for ex-
Ehange in one of the chkur-like theories) is about a Ffactor of 3 too low
%br’éhe 218/21P ratios at 0°. This ratié is underestimated because of the
fneglect of polarization. Polarization is much more important for the exci-
tatlon of the 218 state than the 2lP state as explained in Section IIT.A.
Includlng polarlzatlon in the calculatlon of the DCS for the 218 state using
the theoretically most justified polarizatlon model (o = a(l) = 1.584 a3,

= (S/M)biw, and form B’ for the polarizétion cutoff function, see Section
III) gives ECS ratios at 0° in much better agreemént with experiment (see
Fig. 10). This result indicates that including polarization in the descrip-
tion of the 218 excitation is necessary to describe the 218 and 21P excita-

tion processes to the same degree of accuracy.

C.o-
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Fig. 10.

30 40 50 60 70 80 90 100" 200 300
E(eV)

218/21P intensity ratio at a scattering angle of 0° as a function
of impact energy. The dashed line is the (interpolated) experi-
mental results of Chamberlain et al. (Ref. 19), the circles (with
error bars) are the present experimental results, the asterisk is
the result of Lassettre et al. (Ref. 18). The curyes are calcu-
lated igwthe indicated approximation. a = 1.584 ag and b =

(5/4) bi" at each energy. (Note the change in the impact energy
scale at energies above 100 eV.)
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ElS/ElP intensity ratio at a scattering angle of 10° as a
function of impact energy. The triangles are the experi-
mental data of Vriens et al. (Ref. 2), the asterisk is the
result of Lassettre et al. (Ref. 25), and the square is
interpolated from the results of Silverman and Lassettre '
(Ref. 10). The curves are calculated in the approximations
ags indicated. The dotted curve is calculated with a = 1.584
ag and b = (5/4) b{w at each energy. The dashed curve is
calculated with a = 1.584 ag and with_b equal to the value
determined empirically from the ElS/QlP ratios at 0° at
each energy.
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Ho

Ratio of the differential cross section for
excitation of the 218 state to that for exci-
tation of the 2lP state as a function of inci-
dent energy at 8 = 60°. The curve is calculated
in the symmetrized Born-Ochkur-Rudge approxima-
tion (BORB.I). The circles are the present
experimental results. The error limits are

the average deviation for 3-6 runs.” No error
estimate has been made for the 81.6 eV point.
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The 0° ratios are predicted more accurately by the first Born approxi-
mation at very high energies than at lower ones. Boersch, Geiger, and
Schrb“der23 obtain a 215/2]13 intensity ratio of (1.43 % 0.27) x 1o'LF at 25

keV and § = 0°. This ratio is calculated to be 1.03 x lO-lL and 1.05 x lO-'lL

5,86 and SCF (with the experi-

using the Born approximation with the accurate
mental AE) oscillator sfrengths, respectively. The inclusion of polariza-
tion in the 218 state slightly improves the agreement between experiment
and theory. With a = 1.58k4 ag and b = (5/4)b§% and B/PB’ approximation
yields a 218/2;P ratio of 1.10 x lO—u. Calculations using the other polari-
zation forms give results within a few percent of this value. The polariza-
tion potential is highly nonadiabatic at this energy (note the large biw in
Table IV), and, hence, it contributes relatively little to the scattering
even at 0°.

The calculations including polarization are not in exact agreement
with experiment for the 0° ratio (see Fig. 10). If, however, with a fixed
a we let the cutoff parameter b in the polarized Born approximation for the
excitation of the ElS state be an empirical gquantity, we can adjust it at
each energy to make the calculated 2lS/ZlP DCS ratio at 0° equal the ex-
perimentally measured one. The value of b determined in this manner depends
on the form chosen for the polarization potential curoff function (Egs.
(23)-(26)). These results are shown in Fig. 14 which compares these empiri-
cally determined cutoff parameters to the theoretically justified b{w.'

agreement is very good. Thus, somewhat surprisingly, we can use the Fetter-

The

Watson criterion to obtain a good estimate of the cutoff parameter b.
Figures 11 and 12 show the polarized Born predictions for the DCS
ratio as a function of energy at 5° and 10° scattering angles, respectively.

The inclusion of polarization has little effect at high energy where the
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first Born approximation is accurate, but at lower energies it improves
agreement with experiment significantly.

The effects of exchange and of distortion of the scattering electron
wave function are small at small scattering angles. However, these effects
are presumably large at 60°. Also, the short-range form of the polarization
potential (i.e., the choice of polarization cutoff function in the present
calculations) is much more important at § = 60° than it is at small scatter-
ing angles. For these reasons the present calculations do not predict the
cross sections accurately at scattering angles as large as 60° (see Fig. 13).

2. Angle Dependence

The Ochkur and the symmetrized Bbrn-bchkur-Rudge methods predict dif-
ferential cross sections which have a zero except very close to threshold.
(The angle at which this zero occurs depends on the particular energy-loss
and incident energy and approaches 90° in the limit of high impact energy.)
Since the zeros in the 218 and 21P differential cross sections do not quite
coincide, these approximations yield cross section ratios with an infinite
singularity. The cross section ratios predicted by the Born, unsymmetrized
Born-Ochkur-Rudge, and the Born-transferred-Kang-Foland methods do not have
this singularity since these methods yield DCS's which are monotonically de-
creasing functlons of §. Table IX compares the 218/21P differential cross
section ratios given by these latter four methods at several angles and
energies. The low-angle, high-energy ratios predicted by the methods which
predict a singularity in the ratios also agree with those presented in Table
IX since the zero in the differential cross section near 90° at high energy
has little effect on the low-angle ratios.

The present calculations are shown to be in excellent agreement with

the high energy ratio data of Silverman and Lassettrelo at 500 eV (see Fig.



TABLE IX. 218/21P differential cross section ratios calculated in the
Born (B), Born-Ochkur-Rudge prior (BOR), Born-Ochkur-Rudge post (BORP),

and Born-transferred Kang-Foland (BTKF) approximations.

Scattering Method
angle ‘
(deg) B BOR BORP BTKF
E = 25 eV
0 0.276 0.267 0.289 0.275
30 0.349 0.338 0.365 0.346
60 0.543 0.528 0.573 0.535
90 0.834 0.819 0.902 0.810
120 1.16 1.15 1.30 1.13
150 1.41 1.41 1.63" 1.40
180 1.51 1.51 1.75 1.50
E = 30 eV
0 0.170 0.168 0.173 0.169
30 0.289 0.285 0.297 0.288
60 0.620 0.609 0.650 0.617
90 1.18 1.16 1.29 1.16
120 1.81 1.78 2.08 1.77
150 2.27 2.24 2.66 2.24
180 2.4k 2.4 2.86 2.42
E = 60 eV
0 0.0557 0.0557 0.0558 0.0556
30 0.397 0.396 0.400 0.397
60 1.66 1.65 1.72 1.66
90 3.70 3.66 h.21 3.71
120 6.07 5.99 6.98 6.04
150 8.23 8.13 9.03 8.09
180 9.12 9.02 9.87 8.96
E = 300 eV
0 0.00898 0.00898 0.00898 0.00898
30 2.83 2.83 2.8L4 2.84
60 17.5 17.5 CLT.T 17.5
90 52.2 _ 52.1 61.k4 52.7
120 92.8 92.4 96.6 9k, 7
150 12k 123 126 126
180 135 135 137 137
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218/21P intensity ratios vs. scattering angle. The squares
(417 and 604 eV) and triangles (511 eV) are the results of
Lassettre et al. (Ref. 9), and the circles (500 eV) are the
results of Silverman and Lassettre (Ref. 10). The dashed
curve is calculated in the B/PC approximation with a = 1.58k
as and b = b{w = 6.13 a5+ The solid curves are calculated in
the post Born-Ochkur-Rudge approximation (BORP). The results
of the BORP and the first Born approximation are indistin-
guishable in the energy and angle range of this figure.



15), with that of Lassettre, Krasnow, and Silverman9 at 511 eV and 41T eV
(see Fig. 15), and with the experimental results of Vriens, Simpson, and
Mielczarek2 at 400 eV (see Fig. 16) and 300 eV (see Fig. 17). Apparently,
theory and experiment9 differ at 604 eV. The lack of high energy experi-
mental data for & > 15° precludes a more rigorous test of these first-order
methods for large-ahgle, high-energy scattering. At high energies, polari-
zation is significant only at relatively small scéttering angles. The data
presently available do not cover the low-angle region well enough to allow
a definitive test of the importance of polarization at these énergies.

As the impact energy is lowered to 225 eV and below, the ratios calcu-
lated either withvor without polarization increase more rapidly with in-
creasing angle thgn do the experimental ones (see Fig."17). However, even
at impact energies as low as 81.6 eV (see Fig. 3), the calculated ratios
are within about a factor of 5 of the experimeﬁtal ones to anglesAas large
as 80° and exhibit a variation with angle which is qualitatively correct.
At energies below 81.6 eV, the ratios calculated without polarization differ
markedly in both magnitude and shape from the experimental ones (see Figs.
1 and 2). However, the inclusion of polarization in the calculation signi-
ficantly improves the agreement between theory and experiment at small
angles (see Figs. 1, 16, and 18).

Figures 18 and 19 show the effect on the calculated intensity ratios
of varying the polarization potential. As the value of o is increased, the
ratio curves become steeper functions of scattering angie for angles greater
than about 30°, énd a minimum develops at lower angles. These changes di-
rectly reflect the changes in the 218 DCS, since the élP DCS used to con-
struct all thése ratios is the same. The important effect of polarization

on the angle dependence of the 218 DCS is discussed in the next section.
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218/21P intensity ratios. The triangles and
circles are the experimental results of Vriens
et al. (Ref. 2) at 400 and 100 eV, respectively.
The squares are the experimental results of
Lassettre et al. (Ref. 25) at 48 eV. The solid
curves are calculated in the BTKF approximation
at the indicated energy. The dotted curve is
calculated in the B/PB’ approximation with o =
1.584 aé and b empirically determined to be
2.08 a . A curve for the Born approximation

at 400 eV would be indistinguishable from the
BTKF curve on the scale of this figure.
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Fig. 17. 218/21P intensity ratios as a function of scat-

tering angle at the indicated energies. The
circles are the experimental results of Vriens
et al. (Ref. 2). The solid curves are calcu-
lated in the Born-transferred Kang-Foland ap-
proximation (BIKF). The dashed and dotted
curves are calculated in the polarized_Born
approximation (B/PB’) with a = 1.58k4 ag. b

(5/4) vi" = k.59 a, for the dashed curve, b _
2(5/4) bEY = 9.18 a,_for the dotted curve at
150 eV; b = (5/4) B = 5.30 a,_for the dotted

curve at 200 eV, and’b = (5/4) BE" = 6.50 a, for
the dotted curve at 300 eV.
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ElS/QlP intensity ratios at E = 55.5 eV. The
ols differential cross section is calculated
in the B/PB approximation, and the olp giffer-
ential cross section is calculated in the Born
approximation. SCF wave functions are used in
both calculations. The curves are labeled with
the value of o used in the 218 cross section
calculations. The cutoff parameter_in the po-
larization potential is b = (5/k4) b{w 2.79 ag
for those curves marked with an asterlsk %nd
was determined empirically from the 2 S/2

cross section ratios at 0° for the others. The
triangles (with error bars, except when the
error is small) are the present data.
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olg/olp intensity ratios at E = 100 eV. The
olg gifferential cross sections are calculated
in the polarized Born approximation using the
indicated form of the polarization potential
(and value of o). The 2P cross sections are
calculated in the Born approximation. SCF wave
functions are used. The cutoff parameter in
the polarization potential for fhe curve marked
with an asterisk is 1.5 (5/4) bi" = 5.62 a, and
the other values are determined empirically
(see text and Fig. 13) to be 6,04 a  for o =
10.0 a3, 5.17 ag for & = 5.0 a3, 3.16 a  for

@ = 1.584 a3 and form C, and 3.02 a, for a =
1.584 ag and form A. The circles are the data
of Ref. 2.
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B. Differential Cross Sections - Angle Dependence

The experimental and calculated DCS's for the 0°-90° angular range are
shown in Figs. 4-8 for several energies below 100 eV (26.5, 34, 4k, 55.5,
and 81.6) and in Fig. 20 for the 0°-20° range at several higher energies
(100, 150, 175, 200, 225, 300, and 400 eV). .Although the Ochkur and the
symmetrized Born-Ochkur-Rudge DCS's have zeroes at some scattering angles,
the different first-order calculations predict approximately the same angu-
lar behavior, which can be simply characterized in most of the cases as
monotonically decreasing as the scattering angle increases and becoming
steeper as the impact energy increases. The agreement between the theoreti-
cal and the available experimental results becomes much better at impact
energies of 81.6 eV and above.

The best agreement between the experimental and theoretical angular
dependence is obtained for the B/PB' calculations as shown on Figs. 5, 6,
and 7 by the dotted curves. These curves are easily seen to be much steeper
than the Born (B) curves due to the inclusion of polarization. Unfortunately,
at the smaller angles the magnitudes of the B/PB’ curves exhibit the poorest
agreement with experiment. (For ease of comparison of their angular depen-
dence with experiment, they were renormalized to the experimental DCS's at
10° by multiplying the calculated values by a factor of 0.281, 0.230, and
0.193 for the energies of 3k, Lk, and 55.5 eV, respectively.)

The plane wave theories used here overestimate the magnitude of the
differential cross section as they did for excitation of the 21P state.7
However, in that case we found that'the Born approximation and the Ochkur-
like approximations gave approximately the correct angle dependence of the
DCS for momentum-transfers less than about 1.6 a.u. This corresponds to

about 40° in the intermediate energy range. Figures 4-7, however, show
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b = (5/4) p§¥ at each energy.
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that the Born approximation and the Ochkur-iike approximations (neglecting
polarization) do not predict the correct angular dependence for excitation
of the 218 state even at angles considerably less than 40°. The inclusion
of dipole-polarization, making the adiabatic approximation in the initial
state, brings theory and experiment into better qualitative agreement for
the angle dependence. In Appendix IIT we discuss the angle range over which
plane wave theories agree with experiment for elastic scattering by He, Hg,
and H2, as well as the Z;P and 218 excitations.

Because of the possibility of determining transition polarizabilities
empirically from experiment, it is important to examine the effect of the
choice of polarization potential on the DCS's. This is explicitly shown in
Figs. 21-24 for E = 34, Uk, 55.5, and 81.6 eV, respectively. The calcula-
tions shown in these figures were carried out in the BOR/P and B/P approxi-
mations with different types of cutoff functions and with different values
of o and b. At low impact energies (e.g., 34 eV) we can draw the following
general conclusions: In the BOR/PA calculations the angle dependence of
the DCS's is not very sensitive to changes in either o or b. In the BOR/PC
calculations, as the value of o is increased the DCS curves become steeper
at low angles, and a minimum and a maximum develop in the curve at interme-
diate angles. These minima and maxima shift to lower angles as o is in-
creased. The behavior of the DCS's calculated in the BOR/PB and BOR/PB’
approximations is intermediate between those of the BOR/PA and BOR/PC ap-
Proximations. Attempts at determining the transition polarizability from
the present data indicate that it cannot be determined with any accuracy.

The best agreement with experiment at 34 eV is obtained with polariza-
tion form C and with ¢ ~ 7 ag. This value of o is considerably larger than

the theoretically justified value of 1.58k ag. However, the value of ¢
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Fig. 21. 218 differential cross sections at E = 34 eV calculated in

the polarized Born-Ochkur-Rudge approximation (BOR/P) with
form A and form C polarization potentials. The numbers i,
2, and 3 after the designations refer to o = 1.58k ag, o =
3.0 ag, and o = 7.0 aé, respectively. The cutoff perameter
used In the polarization potential is biW for the BOR/PC-1¥
and (r/4) bi" for the BOR/PA-1¥ curves, and is determined
empirically (see text) for the others. The circles with
error bars represent the present data.
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olg aifferential cross sections at E = Lk eV with a = 1.0 ag.
The curves are calculated in the indicated approximation.

The empirically determined cutoff parameter b is used in each
calculation which includes polarization. The circles with
error bars are the present experimental results at this
energy.
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olg differential cross sections at 8l.6 eV calculated in the
polarized Born-Ochkur-Rudge approximation (BOR/P) with form
A and form C polarization potentials. The numbers 1 and 3
after the symbols refer to o = 1.584 ag and o = 7.0 a3, res-
pectively. The cutoff parameter used in the polariza%ion
potential is determined from the experimental 215/21P inten-
sity ratios at 6 = 0° (see text). The BOR/PA-3 curve is
shown only up to 8 = 40° because at higher angles it cannot
be distinguished from the BOR/PA-1 curve on the scale of this
figure. Curves for BOR/PA and BOR/PC with o = 3.0 a3 are
not shown since they are intermediate between the two cases
shown. The circles are the present data.



required for the best agreement with experiment decreases with increasing
energy in contrast to the expected energy independence of this quantity
(see Section III.D). These observations appear to indicate that the polari-
zation potential should go to zero at small r faster than form B! does.

At higher impact energies (81.6 eV) all the calculated curves fall into
a relatively narrow:bénd, and they predict the magnitude of the DCS's in
agreement with experiment out to about T0°. The calculations are not ex-
pected to be reliable at large scattering angles because of uncertainties
in the proper short range form of the polarization potential. At energies
near 100 eV and higher the influence of o and b is significant only at
small scattering angles, where the lack of experimental data precludes a

definitive test of these calculations.
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V. COMPARISON OF THEORETICAL AND EX-

PERIMENTAL INTEGRAL CROSS SECTIONS

The integration of our experimental 218 differential cross sections to
obtain 2lS integral cross sections is discussed in Section II, and the re-
sults (circles with error bars) are plotted in Fig. 25. The high energy
(200, 225, 300, and 400 eV) experimental integral cross sections obtained
by Vriens, Simpson, and Mielczareke are shown in this figure (triangles).
The cross sections at 100, 150, and 175 eV (diamonds) were obtained by inte~
grating the 218 differential cross section fits given by these authors.
These latter results are subject to some uncertainty since only a small
range of angles (8 < 20°) was studied. We obtained the remaining experi-
nental cross sections in Fig. 25 (squares) by an analysis of the excitation
function measurements of Dugan, Richards, and Muschlitzg6 as discussed
below.

Dugan, Richards, and Muschlitzg6 measured the relative electron-impact
excitation function R(E) for production of the ols state for 26 < E < 136
eV. Their excitation function includes contributions from radiative decay
to the ols state by higher states (cascade) excited by electron impact,

i.e.,

Q(E) = x R(E) - 2_32 Q,nA(an - els) (65)

where the last term is the cascade correction, A 1s independent of E and
normalizes their relative data to the absolute scale, Qn(E) is the integral
cross section for excitation of the an state, A is the branching fraction
for n;P - 218 radiative decay, and Q(E) is the 218 integral cross section.

The branching fractions for n = 2-8 are calculated from the table given by
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Fig. 25.

100 1000

llS - 218 integral cross sections as a function of impact
energy. The squares are the experimental results of Dugan
et al. (Ref. 26) (corrected for cascade, see text); the
triangles and diamonds are those of Vriens et al. (see text)
(Ref. 2); and the circles (with error bars) are the present
experimental results (see text). The curve labeled SML is
obtained by scaling the 318 excitation function data of

St. John, Miller, and Lin (Ref. 97) (see text). The other
curves are calculated using the indicated approximations.
The curves labeled O and OP are calculated using the Born
direct amplitude and the Ochkur approximation in the prior
and post formulations, respectively, for the exchange ampli-
tude. For the polarized Born approximation (B/PB’), a =
1.584 aé and b = (5/k4) b{w at each energy. The low energy
rise in the B/PB' cross section (not shown) is steeper

than that of the Born-Ochkur-Rudge approximation (BOR).
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Gabriel and Heddle. Since the 31P state is the largest contributor to

the cascade correction, we assume that

3 ' '
o (8) = ()" ay®)"  m=2k5.. (66)
We then obtain

Q(E) = A R(E) - 0.0527 Q3(E) . (67)

We use the absolute values of Q3(E) of St. John, Miller, and Lin.97 The
value of X in Eq. (67) is determined by requiring that Q (136 eV) = 0.030
ai, which is chosen to be in reasonable agreement with the lower energy
data of Vriens, Simpson, Mielczarek.2 The resulting cross section values
Q(E) are plotted (squares) in Fig. 25.

The curve in Fig. 25 labeled SML is obtained by assuming that the shape
of the 2lS integral cross section curve is the same as the 3lS one measured

by St. John, Miller, and Lin97

as a function of the incident energy in
threshold units (E/AE(llS - nlS)). The ordinate for this curve is deter-
mined by normalizing it to the E = 300 eV integral cross section data of
Vriens, Simpson, and Mielczarek.2

The different measurements for the 218 integral cross section shown in
Fig. 25 are in good accord with each other with the possible exception of
the result deduced from the SML data below about 50 eV.

The other curves in Fig. 25 represent the various theoretical models
discussed in Section III, both with and without polarization as indicated.
The total cross sections calculated with the BOR and B/PB! (a = 1.584 ag)
models reach maxima of about O;2l and 0.37 ai, regpectively, withiﬂ an eV

of 26 eV. TFigure 26 presents some additional integral cross sections cal-

culated using several forms of the polarization potential. This figure
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shows the sensitivity of the magnitudes of the B/P cross sections to the
form of the short range part of the polarization potential.

The cross sections predicted by the first-order theories apparently
agree well with experiment for energies greater than about LOO eV but are
too large at lower energies. This behavior has been observed by several
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other investigators} Lassettre used the Born approximation and a gener-
alized oscillator strength fitting procedure to obtain the 2lS integral
cross section at all energies based on experimental generalized oscillator
strengths measured only at high energies. His cross section curve lies
very close to the BTKF curve in Fig. 25 and somewhat below the Born approxi-
mation results based on the accurate generalized oscillator strengths of
Kim and Inokuti.5 Schneider87 used a generalized oscillator strength calcu-
lated using linear response theory to calculate an integral cross section
at 500 eV. His value is just slightly (10%) larger than that given by the
pure Born result using the SCF wave functions. As in the case of the 21P
excitation,7 the VPS, OP, 0, and BORB.I approximations‘give considerable
improvement over the Born approximation in the shape of the cross section
and the VPS and OP are only about 50% larger than the maximum in the experi-
mental cross section. Over the whole energy range, the VPS and OP approxi-
mations to the integral cross section give the best agreement with experi-
ment. This fact could be useful in empirical work. As a general rule, the
inclusion of polarization in a given first-order théory results in an even
larger integral cross section.

Figure 27 compares the near-threshold behavior of the 2lS integral
cross sections predicted by the present first-order methods and by close-
coupling caléulations with the lowest.energy experimental dafa from Fig. 25.

1

The “triangles are the results of a three-state (llS, 278, 233) close-coupling
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llS - 218 integral cross sections as a function of impact
energy near threshold. The square and circle (with error
bar) are the experimental results of Dugan et al. (Ref. 26)
and the present work, respectively. The triangles are the
theoretical results obtained by Marriott (Ref. 99). The
curve labeled BCO is the theoretical result of Burke et al.
(Ref. 41). The other curves are the present theoretical
results, calculated using the indicated approximations.



calculation performed by Marriott.99 Since he used a threshold of 20.58
eV, his energy scale was multiplied Dby 20.61/20.58 before plotting the cross
sections. The five-state (llS, ElS, 238, 23P, élP), close-coupling calcu-
lation by Burke, Cooper, and OrmondelLl ig labeled as BCO in the figure.

The experimental data points are significantly smaller than all the calcu-
lated cross sectioﬁs, including the Marriott close-coupling results. The
five-state close-coupling calculations have not yet been reported over a
large enough energy range, nor have experimental data been reported at low
enough energies, to permit a more definitive comparison. The first-order
theories are of course not expected to be reliable in the energy range of
Fig. 27. The differences between the curves labeled BORB.I and BORB.I(SCF)
are due entirely to differences in the bound-state wave functions used in

the two calculations.
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VI. SUMMARY AND DISCUSSION

Experimental and quantum mechanical results are presented for the inte-
gral and differential cross sections (DCS's) for excitation of the 218 state
and for the ratio of DCS's for excitation of the 2lS and 21P states in the
impact energy range 26.5-81.6 eV. To explain the angle dependence of the
small-scattering-angle (8 < 40°) DCS for E = 34-81.6 eV for either transi-
tion it is unnecessary to include an accurate treatment of the distortion
of the scattering-electron wave function or of exchange of the incident
electron with the bound electrons. This property of the scattering is
accurately predicted using planejwave scaftering functions and an effective
potential (optical potential) to represent the interaction of the scatter-
ing electron with the target. For the E;P excitation, the potential may be
determined in the static approximation (unperturbed initial and final state),
but for the 218 excitation it is necessary to include the induced dipole in
the description of the target. Although the adiabatic polarization model
was previously shown to be an adequate way to iﬁclude'the effect of the in-
duced dipole on elastic scattering at impact energies at least up to a few
hundred eV, this model is not adequate for the llS - 218 transition. Evi-
dently, nonadiabatic effects are more important for inelastic scattering
than for elastic scattering. We use Fetter and Watson's theoretical crite-
rion for the applicability of the adiabatic approximation to evaluate a
cutoff parameter for including some ﬂonadiabatic effects in the polarization
model. This procedure gives results in better agreement with experiment
than those obtained by inciuding only the static interaction.

The present calculations agree better with higher energy (E = 100 eV)
experimental DCS's than do previous theoretical treatments (the first Born

approximation).
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The calculated magnitudes of the differential cross sections are in
poor agreement with experiment at intermediate energies. The agreement is
worse in the present case than in the case of the 2lP excitation.T

The usefulness of self-consistent-field (SCF) single-configuration
wave functions for describing the target is examined. We find, on compar-
ing the results to those from more accurate calculations, that SCF wave
functions reproduce many facets of the more accurate calculations with
good accuracy.

The results of this study indicate that the procedures applied to
helium in this paper should also be useful for more complicated atoms and
diatomic molecules. The criteria developed here for the importance of
polarization can be used to discuss in a consistent way the DCS's for elas-

tic scattering of electrons by He and H, and for excitation of the 218 and

06

2
21P states of He.l

Finally, we examine, using our experimental results, the reliability
and correct interpretation of experiments carried out before 1940. It is

found that in some cases that data is still useful.



APPENDIX I: SMALL MOMENTUM-TRANSFER FORMS

- OF THE POLARIZATION AMPLITUDES

Tf the polarization amplitudes (Egs. (33)-(36)) are expanded in a power

series in the momentum-transfer g and if second and higher order terms are

ignored, the following expressions for the amplitudes are obtained.

2a)  The ;g

T
g—0
b o
(B) 12 3B
fP qfo —"_—'3-b (l - —T:{'g )

where
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APPENDIX IT. COMPARISON OF THECORY AND RECENT EX-

PERIMENTS WITH OLDER EXPERIMENTAL WORK

Investigations of the angular dependence of inelastic scattering by:
helium carried out prior to 1940lOO suffer primarily from a lack of adequate
energy resolution. The most intense inelastic feature in the energy-loss
spectrum was usually observed to peak at an energy-loss of about 21.1 eV
and was attributed to excitation»of the 2lP state. It is evident from the
results of more recent investigations37 that this peak contained significant
contributions from excitation of the other n = 2 states (i.e., 238, 218,
and'23P states), particularly at larger scattering angles and lower impact
energies. In some cases, these older differential cross section data are
also affected by double scattering and improper effective path length cor-
rections. In general, these early investigators ccllected data over a wide
range of angles. These data cannot be readily reproduced with good resolu-
tion. It is of interest to re-examine these data in the light of more re-
cent results.

As an example, we will consider the data of Nicholl and M.ohrlooa since
they were careful to 6perate under conditions for which double scattering
did not occur. Their basic experimental measurement is the peak (21.1 eV
energy—loss) scattered electron intensity as a function of 8. This inten-
sity is multiplied by sin é +to obtain a differential cross section in arbi-
trary units. The energy resolution in their experiment appears to be about

1.5 eV (see Fig. 3 of Ref. 100b). Since their observed 21.1 eV energy-loss

or
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feature contained contributions from all of the n = 2 excitation cross sec-
tions and since these cross sections have quite different angular dependen-
cies, it is to be expected that the shape of this feature varied with changes
in the scattering angle. With a knowledge of the n = 2 cross section ratios37
and the assumption of a Gaussian energy distribution (full-width at half-
maximum equal to 1.5 eV) for the incident beam, we can estimate the ratio

of peak height to peak area which was obtained in the experiments of Nicholl
and Mohr. At 34 eV, this ratio changes by only about 6% for scattering

angles between 10° and T70°.

The data of Nicholl and Mohr at 4O eV are shown in Fig. 28 (triangles).
These data are compared with the sum of all n = 2 differential cross sections
at 40 eV (circles) obtained by interpolation of the cross section ratios of
Ref. 37 and the 21P differential cross sections of Ref. 7. In addition,
theoretical calculations of the various n = 2 cross sections are included
in the figure.

The two sets of experimental data in Fig. 28 are in good agreement.
Similar comparisons at other energies (e.g., the data of Hughes and
McMillanlOOc with those of Vriens et gl.g) also show good agreement. Appar-
ently these early measurements provide reasonably good estimates of the
angular dependence of the sum of all n = 2 differential excitation cross

sections over a wide range of scattering angles and incident energles.
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Differential cross sections vs. scattering angle at E = 40 evV.
The triangles represent the data of Ref. 100a and the circles
(with error bars) represent the sum of all n = 2 excitation cross
sections as derived in Appendix II. The former data are normalized
to the latter at 6 = 30°. The curves are the results of theoreti-
cal calculations for transitions from the 1°S state to the indica-
ted final states. The curves labeled 2°S and 2P are calculated
in the Ochkur-Rudge approximation and are taken from Ref. 101.

The curve lobeled 21P is calculated in the Born approximation and
is taken from Ref. T. The curves labeled ols are the present re-
sults calculated using the Born (B) and polarized Born (B/PB')
agproximations and SCF wave functions. For the latter, o = 1.584
a3 and b = (5/4) Pi" = 2.37 ag. The results of the B/PB’ approxi-
mation are not shown for 6 >_50°. ﬂmcmqehmﬂedeistm
sum of the calculated 25, 2-P, 218, and 2P cross sections in
which polarization in the 2°S calculation is included for angles <
50° and ignored for larger angles.
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APPENDIX III: THE ANGLE RANGE OVER WHICH PLANE

WAVE THEORIES AGREE WITH EXPERIMENT

Both Rice et 33.38-39 and Miller, Mielczarek, and Krauss102 have at-
tempted to use the experimentally measured angle dependence of the DCS as
an indicator of the state symmetries involved in a transition which produces
a particular energy-loss peak.

The method used by Rice and»co-workers is empirically based on the com-
parison of measured DCS ratios as a function of angle for various types of
transitions.lo3 However, Miller et al. attempt to match the angle depen-
dence of the experimental DCS to that of a Born approximation calculation.
They argue that a dip in the experimental DCS means the transition is of
the type for which the Born approximation DCS has a dip. If such reasoning
is to be used confidently, we must be reasonably certain that the Born ap-
proximation predicts the correct angle dependence of the DCS in certain
situations. Further, in order to decide whether plane wave calculations
for different types of transitions can be useful in gﬁiding the method of
Rice et al., we must determine the range of angles for which plane wave cal-
culations predict the correct angle dependence of the DCS.

Table X summarizes some of the presently available data on the range
over which the Born and polarized Born approximations predict the approxi-
mately correct angle dependence of the differential cross sections. Col-
ums 1, 2, and 3 list the target, transition, and impact energy, regpectively.,

Column & contains the maximum angle emax for which plane wave theory and

101
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experiment have approximately the same shape. This angle is determined by
normalizing theory to experiment at 6 = 20° and finding the angle at which
they deviate by 50%. Columns 5, 6, and 7 contain, respectively, the
momentum-transfer q(amax), the experimental DCS IexP(emaX), and the calcu-
lated DCS Icalc(emax) evaluated at 8 = 0 .

The plane wave croés sections agree qualitatively with experiment at
small 8, where many partial waves contribute appreciably to the DCS. At
large O the scattering is due mainly to the lowest few partial waves, where
distortion of the plane wave may be appreciable. To obtain a rough estimate
of the contribution to scattering involving large distortion, we present in
Colum 8 one-half the maximum theoretical cross section for s-wave scatter-
ing 1°. The s-wave limit for the DCS is l/k2 for elastic scattering and
l/lLk2 for inelastic sca‘o‘ter:’mg.lo)+ Finally, Columns 9 and 10 list, respec-
tively, the experimental and calculated DCS's divided by IS/2.

In a previous paperT we noted that for excitation of the 21P state,
the angle dependence of the DCS was predicted out to q =~ 1.6 a.u. The more
extensive collection of data presented in Table X shows that for elastic
scattering the plane-wave theories often predict the angle dependence cor-
rectly out to even larger q. The data also indicate a systematic trend in
which the angle dependence of the DCS is correctly predicted out to larger
g at higher energies than at lower ones. Further, the magnitudes of the
experimental and theoretical DCS's agree better at higher energy. In dis-
cussing scattering from a central potential of finite range, Schifflo5 sug-
gests that the Born approximation can be used at all angles provided the
incident energy is high enough while at lower energies the small-angle
scattering may be given correctly when the large-angle scattering is not.

Such a trend is consistent with the present results.
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TABLE X

The range of angles over which plane-wave theories predict approximately the correct angle dependence

of the differential cross section for elastic and inelastic scattering.

in Appendix IV.

are calculated in the polarized Born approximation.

calculated in the Born approximation.

The column headings are defined

The theoretical cross sections for elastic scattering and excitation of the He 2 S state

Those for excitation of the ElP,state of helium are

In cases where the theory and experiment still satisfy our cri-

terion for agreement at the largest angle for which experimental data are available, we can only obtain

lower bounds on columns 4 and 5 and upper bounds on colums 6-7, 9-10.

B emax Qo 78XP Icalc IS/2 2Iexp/Is Icalc/Is
Target Transition (eV) (deg) (a.u.) (aog/sr) (aog/sr) (aog/sr)

He élastic 392 >80  =22.18 <0.23 <0.23 0.17h <1.3 <1.3
81.6% 50 2.07 0.18 0.27 0.084 2.1 3.2

5odb 260 =6.06 <0.011 <0.011 0.01k <0.78 <0.78

He 1's - 2's 3k 2p© 0.76 0.020 0.18 0.050 0.40 3.6
Iy 26°  0.85 0.007 0.11 0.039 0.18 2.8

55.5 Lo 1.36 0.0016 0.013 0.031 0.052 0.42

81.6 45 1.77 0.002 0.0052 0.022 0.091 0.2h

100d 220 >0.94 <0.029 <0.051 0.017 <1.7 <3.0

175d 215 >0.93 <0.04k <0.055 0.0097 <h.5 <5.7
300d 210 =20.82 <0.069 <0.074 0.0057 <12 <13
uood =210 =20.95 <0.052 <0.061 0.00k2 <12 <1h
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TABLE X (cont.)

Target Transition E emax Upax %P Icalc IS/E QIexP/IS - QIca:LC/IS
He 1ts - 2olp 34° 40 1.0k 0.017 0.084 0.050 0.3k 1.7
L4® 58 1.56 0.0072 0.010 0.039 0.18 0.26
55.5° 45 1.4k 0.014 0.019 0.031 0.45 0.61
81.6° 4o 1.91 0.0067 0.0027 0.022 0.30 0.12
100° 220 =0.94 <0.18 <0.20 0.017 <11 <12
175f 215 20,94 <0.19 <0.22 0.0097 <20 <23
300f =210 =20.82 <0.35 <0.37 0.0057 <61 <65
soot 210 20.95 <0.20 <0.21 0.0042 <48 <50
He elastic 3008 >1.61 <7.5 <33" 0.028 <068
14008 >1.86 <h, T <o0™ 0.017 <276
5008 20,1 <3.3 2B 0,01k <236
H, elastict 7 115 1.21 2.0 1.3 0.97 2.1 1.3
10 120 1.48 1.0 0.65 0.68 1.5 0.96
13.6 280 >1.29 <l1.2 <l.2 0.50 <2.h4 <2.h4
20 100 1.86 0.5 0.30 0.3k 1.5 0.88
L5 >80  =22.3h4 <0.15 <0.12 0.15 <1.0 <0.80
60 120 3.64 0.043 0.03 0.11 0.39 0.27
81.6 =280 =23.15 <0.058 <0.05 0.084 <0.69 <0.60
30 100 2.28 0.14 0.23 0.61
50 110 3.1k 0.05 0.1k 0.36
100 105 4.30 0.018 0.068 0.26
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TABLE X (cont.)

8 Reference 106.
J. P. Bromberg, J. Chem. Phys. 50, 3906 (1969).

o'

€ These angles, obtained by interpolation, are so close to 20 degrees that they imply there is
little quantitative agreement in the angle dependence of theory and experiment.

Experimental data of Ref. 2 and polarized Born approximation calculations of present work.
Reference T.

Experimental data of Ref. 2 and Born approximation results of Ref. T.

J. P. Bromberg, J. Chem. Phys. 51, 4117 (1969).

5 R O+ 0O

These values are (36.5/18.65)2 times greater than the values in g due to an error in that
calculation.

[

Reference 46.

very
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The entries in Column 9 of Table X are near unity for the elastic scat-
tering data and possibly the llS 4»2lP DCS's. Thus, s-wave scattering may
account for the values of emax obtained in these cases. However, the angle
dependence of the llS - 218 DCS's is predicted to angles at which the cross
section is considerably lower than our estimate of the maximum probable s-
wave contribution. Poséibly our use of %Is for this estimate is not as
realistic in this case. In general, Column 9 provides a less energy-
dependent criterion for the validity of the plane wave theories than do
either Columns 4 or 5.

Table X shows that plane wave theories are more successful for elastic
scattering than for inelastic scattering. This success is probably due to
the larger contributions to the cross sections from higher partial waves in
the elastic case. For the two inelastic transitions in the table, the Born
approximation is less valid for the 218 excitation than for the 21P one.
This is probably due to the much greater difficulties in estimating the ef-
fective potential for the 218 case. This points up the importance of fur-

ther study of the nonadiabatic polarization transition potential.



10.
11.
12,
13.
1h.

15.

REFERENCES

E. N. Lassettre and E. A. Jones, J. Chem. Phys. L0, 1222 (196L4).
L. Vriens, J. A. Simpson, and S. R. Mielczarek, Phys. Rev. 165, T (1968).

N. F. Mott and H.S.W. Massey, The Theory of Atomic Collisions (Clarendon

Press, Oxford, 1965), 3rd ed., Pp. 484-488, 499, and references therein.

H.S.W. Massey and E.H.S. Burhop, Flectronic and Ionic Impact Phenomenon

(Clarendon Press, Oxford, 1969), 2nd ed., Vol. I, (a) pp. 480-496 and (b)
Chap. XVIIT.

Y.-K. Kim and M. Inokuti, Phys. Rev. 175, 176 (1968).

A. Skerbele and E. N. Lassettre, J. Chem. Phys. 33, 3806 (1970).

D. G. Truhlar, J. K. Rice, A. Kuppermann, S. Trajmar, and D. C. Cartwright,
Phys. Rev. Al, 770 (1970). The normalization of the experimental absolute
21P differential cross sections presented there should be modified as dis-
cussed in Section iI of this paper. |

D. G. Truhlar and J. K. Rice, J. Chem. Phys. 22, lmSO (1970).

E. N. Lassettre, M. E. Krasnow, and S. M. Silverman, J. Chem. Phys. 40, 1242
(196L4).

§. M. Silverman snd E. N. Lassettre, J. Chem. Phys. 40, 1265 (196k).

A. Skerbele and E. N. Lassettre, J. Chem. Phys. 45, 1077 (1966).

J. A. Simpson, M. G. Menendez, and S. R. Mielczarek, Phys. Rev. 130, 76 (1966).
D. Andrick, H. Ehrhardt, and M. Eyb, Z. Physik 21k, 388 (1968).

G¢. E. Chanberlain, S. R. Mielczarek, and C. E. Kuyatt, Phys. Rev. A2, 1905
(1970).

G. E. Chanberlain, J. A. Simpson, S. R. Mielczarek, and C. E. Kuyatt, J. Chem.

Phys. L7, L4266 (1967).

107



16.

17.

18.

19.

20.
21.

22.

23.

2k,

25.

26.

27,

28.
29.
30.
31.

108

J. A. Simpson and S. R. Mielczarek, J. Chem. Phys. 39, 1606 (1963).

E. N. Lassettre, A. S. Berman, S. M. Silverman, and M. E. Krasnow, J. Chem.
Phys. 40, 1232 (196k4).

E. N. Lassettre, V. D. Meyer, and M. S. Longmire, J. Chem. Phys. &;, 2952
(1964).

G. E. Chamberlain, H. G. M. Heideman, J. A. Simpson, and C. E. Kuyatt, IVth

International Conference on the Physics of Electronic and Atomic Collisions:

Abstracts of Papers (Science Bookcrafters, Hastings-on-Hudson, 1965), p. 378.

J. P. Doering, J. Chem. Phys. 45, 1065 (1966).
J. P. Doering and A. J. Williams, J. Chem. Phys. 47, 4180 (1967).
J. P. Doering, private communication (1967).

H. Boersch, J. Geiger, and B. Schroder, Vth International Conference on the

Physics of Electronic and Atomic Collisions: Abstracts of Papers (Nauka,

Leningrad, 1967), p. 481.

A. Skerbele and E. N. Lassettre, Vth International Conference on the Physics

of Electronic and Atomic Collisions: Abstracts of Papers (Nauka, Leningrad,

1967), p. L495.

E. N. Lassettre, A. Skerbele, M. A. Dillon, and K. J. Ross, J. Chem. Phys.
18, 5066 (1968).

J. L. G. Dugan, H. L. Richards, and E. E. Muschlitz, J. Chem. Phys. Eé,
346 (1967).

B. L. Moisiewitsch and S. J. Smith, Rev. Mod. Phys. L0, 238 (1968), (a) p.
254 and references therein.

V. I. Ochkur, Soviet Phys.-JETP 18, 503 (196k).

M. R. H. Rudge, Proc. Phys. Soc. (London) 85, 607 (1965).

0. Bely, Proc. Phys. Soc. (London) 87, 1010 (1966).

D. 8. F. Crothers, Proc. Phys. Soc. (London) 87, 1003 (1966).



32.

33.
3k.

35.

36.

37.
38.
39.
Lo.
h1.
Lo.
L3.

L,
L5.

L. Presnyskov, I. Sobelman, and L. Vainshtein, in Atomic Collision

Processes, edited by M. R. C. McDowell (Ndrth—Holland Publishing Co.,
Amsterdam, 1964), p. 243.

T.-J. Kang and W. D. Foland, Phys. Rev. 164, 122 (1967).

R. A. Bonham, J. Chem. Phys. 36, 3260 (1962).
D.GHHM&M,D;C.%ﬂMﬁgm,mﬁA.&mmmmm,PMs.mw.gﬁ,lB
(1968).

D. G. Truhlar and A. Kuppermann, VIth International Conference on the

Physics of Electronic and Atomic Collisions: Abstracts of Papers (M.I.T.

Press, Cambridge, 1969), p. 2LT.

J. K. Rice, A. Kuppermann, and S. Trajmar, J. Chem. Phys. 48, 9hs5 (1968).
A. Kuppermann, J. K. Rice, and S. Trajmar, J. Phys. Chem. T2, 3894 (1968).
J. K. Rice, Ph.D. Thesis, California Institute of Technology, Pasadena (1969).
B. L. Scott, Phys. Rev. 140, A699 (1965).

P. G. Burke, J. W. Cooper, and S. Ormonde, Phys. Rev. 183, 245 (1969).
J. R. Oppenheimer, Phys. Rev. 32, 361 (1928).

(a) S. P. Khare and B. L. Moisiewitsch, in Atomic Collision Processes,

edited by M. R. C. McDowell (North-Holland, Amsterdam, 196L4), p. Lo.

(b) S. P. Knare and B. L. Moisiewitsch, Proc. Phys. Soc. (London) 85, 821
(1965).

R. W. LaBahn and J. Callaway, Phys. Rev. 180, 91 (1969).

S. P. Khare and P. Shobha, in VIth International Conference on the Physics

of Flectronic and Atomic Collisions: Abstracts of Papers, edited by I.

Amdur  (M.I.T. Press, Cambridge, Mass., 1969), p. 8lk.

S. Trajmar, D. G. Truhlar, and J. K. Rice, J. Chem. Phys. >z, 4502 (1970).

109



47. L. Castillejo, I. C. Percival, and M. J. Seaton, Proc. Roy. Soc. (London)
254, 259 (1960).

48, M. H. Mittleman and J. L. Peacher, Phys. Rev. 173, 160 (1968).

49, €. J. Kleinman, Y. Hahn, and L. Spruch, Phys. Rev. 165, 53 (1968).

50. A. L. Fetter and K. M. Watson, Adv. Theor. Phys. 1, 115 (1965).

51l. P. G. Burke, in Scattéring Theory: New Methods and Problems in Atomic,

Nuclear, and Particle Physics, edited by A. 0. Barut (Gordon and Breach,

New York, 1969), p. 193.

52. See, e.g., M. J. Seaton, Proc. Phys. Soc. (London) 77, 174 (1961).

53. D. G. Truhlar, J. K. Rice, S. Trajmar, and D. C. Cartwright, Bull. Am.
Phys. Soc. 15, 786 (1970).

5k. See H. C. Volkin, Phys. Rev. 155, 1177 (1965) and references therein.

55. R. T. Pu, Univ. of Calif. Lawrence Radiation Laboratory Technical Report
UCRL-10878 (Berkeley, 1963).

56. R. J. Damburg and S. Geltman, Phys. Rev. Letters 20, 485 (1968).

57. a) See, e.g., N. F. Lane and R. J. W. Henry, Phys. Rev. 173, 183 (1968).
b) M. H. Mittleman, Ann. Phys. 1hk, 9L (1961).

58. A. R. Holt and B. L. Moisiewitsch, J. Phys. Bl, 36 (1968).

59. D. R. Bates, A. Funda@insky, and H. 5. W. Massey, Phil. Trans. Roy. Soc.
(London) A2k3, 93 (1950).

60. The core terms in the approximate scattering amplitude have been discussed
from opposing viewpoints by (a) J. B. Day, L. S. Rodberg, G. A. Snow, and
J. Sucher, Phys. Rev. 123, 1051 (1961); I.-J. Kang and W. D. Foland, Phys. Rev.
16k, 122 (1967); Ref. 65. (b) M. R. H. Rudge, J. Phys. B (2) 1, 130 (196E);
Ref. 3, Chap. XV. The guantitative effects of the core on the cross
sections have been discussed for the excitation of hydrogen and helium

in Refs. 28 and 35.

110



61.

62,
63.

6l

65.
66.
67.

68.
69.
70.

T1.

T2.

The
.
6.

e
78.

PRECEDING PAGE BLANK NOT FILMED

R. A. Bonham (Ref. 34) gave an earlier derivation of this approximation but
considered it useful only at high energies while Ochkur considered the ex-
pression useful at all energies.

0. Bely, Il Nuovo Cimento 10 49, 66 (1967).

(a) L. Vainshtein, L. Presnayakov and I. Sobelman, Sov. Phys.--JETP 18, 1383
(1964); (v) L. Vainshtein, V. Opykhtein, and L. Presnyakov, Sov. Phys.--JETP
20, 15k2 (1965).

Handbook of Mathematical Functions, edited by M. Abramowitz and I. A. Stegun

(NBS AMS 55 (1964)), Section 15.

T.-J. Kang, Phys. Rev. 179, 101 (1969).

A. W. Weiss, J. Res. Natl. Bur. Std. T1A, 163 (1967).

E. Clementi, "Tables of Atomic Functions," IBM Technical Report (1965). Also,
W. A. Goddard IIT, unpublished.

R. P. Hurst, Acta Cryst. 13, 634 (1960).

D. C. Cartwright and A. Kuppermann, Phys. Rev. 163, 86 (1967).

(a) C. L. Pekeris, Phys. Rev. 115, 1216 (1959). (b) C. L. Pekeris, Phys. Rev.
126, 143 (1962).

A. Messiah, Quantum Mechanics (Torth-Holland Publishing Co., Amsterdam, 1966),

Vol. II, Chap. XVIII.

E. A. Hylleraas and B. Undheim, Z. Phys. 65, 759 (1930).

J.K.L. MacDonald, Phys. Rev. 43, 830 (1933).

W. Kolos and K. Pecul, Ann. Phys. (N.Y.) 16, 203 (1961).

R. Marriott and M. J. Seaton, Proc. Phys. Soc. TOA, 296 (1957).
C. S. Sharma and C. A. Coulson, Proc. Phys. Soc. 80, 81 (1962).
M. Cohen and P. S. Kelly, Can. J. Phys. 43, 1867 (1965).

V. Fock, Z. Phys. 61, 126 (1930).

111



79. E. Trefftz, A. Schliiter, K-H Dettman, and K. J6rgens, Z. Astrophys. &&, 1
(1957).

80. L. P. Smith, Phys. Rev. 42, 176 (1932).

81. M. Cohen and P. S. Kelly, Can. J. Phys. Lk, 3227 (1966).

82. M. Cohen and R. P. McEachran, Proc. Phys. Soc. 92, 37 (1967).

83. W. J. Hunt and W. A. Goddard III, Chem. Phys. Lett. 3, 41k (1969).

84, W. A. Goddard III, Phys. Rev. 157, 81 (1967).

85, D. C. Cartwright and W. A. Goddard IIT (unpublished).

86. K. L. Bell, D. J. Kennedy, and A. E. Kingston, J. Phys. B 2, 26 (1969).

87. B. Schneider, Phys. Rev. A2, 1873 (1970). The authors thank Dr. Schneider
for providing a copy of this work prior to publication.

88. G.W.F. Drake and M. Cohen, J. Chem. Phys. 48, 1168 (1968).

89. A. L. Stewart, J. Phys. B 2, 309 (1969).

90. E. G. Wikner and T. P. Das, Phys. 107, 497 (1957).

91. M. Yoshimine and R. P. Hurst, Phys. Rev. 135, A612 (196L).

92. Y. M. Chan and A. Dalgarno, Proc. Phys. Soc. 85, 227 (1965).

93. P. Sitz and R. Yaris, J. Chem. Phys. 49, 3546 (1968).

o, G.W.F. Drake, private communication.

95. G.W.F. Drake and A. Dalgarno, Astrophys. J. 157, 459 (1969).

9G. A. H. Gabriel and D.W.0. Heddle, Proc. Roy. Soc. (London) A258, 124 (1960).

97. R. M. St. John, F. L. Miller, and C. C. Lin, Phys. Rev. 134, A888 (196L).

98. E. N. Lassettre, J. Chem. Phys. 43, 4lh79 (1965).

99. R. Marriott, in Atomic Collision Processes, edited by M.R.C. McDowell (ilorth-

Holland Publishing Co., Amsterdam, 196L), p. 11k,
100. See, for example, (a) F. H. Nicoll and C.B.O. Mohr, Proc. Roy. Soc. (London)

A1k2, 320 (1933); (b) C.B.O. Mohr and F. H. Nicoll, ibid. A138, 229 (1932);

1l2



J101.

102.

103.

10L.

105.

106.

(¢) A. L. Hughes and J. H. McMillen, Phys. Rev. 4, 20 (1933); (d)

E. G. Dymond, Phys. Rev. 29, L33 (1927); (e) M. Goodrich, Phys. Rev. 52, 259
(1937).

D. C. Cartwright, Ph.D. Thesis, California Institﬁte of Technology, Pasadena
(1967).

K. J. Miller, S. R. Mielczarek, and M. Krauss, J. Chem. Phys. 51, 26 (1969).
As an example of the application of this method, see 8. Trajmar, J. K. Rice,
P.S.P. Wei, and A. Kuppermann, Chem. Phys. Lett. 1, 703 (1968).

Ref. 3, pp. 325-326.

L. I. Schiff; Quantumn Mechanics (McGraw-Hill Book Co., Inc., N. Y., 1955),

2nd ed., pp. 169-170. We thank S. Lipsky for helpful discussion of this
point.
D. G. Truhlar, J. K. Rice, S. Trajmar, and D. C. Cartwright, Chem. Phys.

Lett. 9, 299 (1971).

113



